This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343370 #10 Jan 02 2023 16:49:00 %S A343370 1,-1,-1,-2,-1,-1,-1,-4,0,-1,-1,-4,-1,-1,1,-8,-1,-2,-1,-4,1,-1,-1,-12, %T A343370 0,-1,0,-4,-1,-3,-1,-16,1,-1,1,-10,-1,-1,1,-12,-1,-3,-1,-4,0,-1,-1, %U A343370 -32,0,-2,1,-4,-1,-4,1,-12,1,-1,-1,-16,-1,-1,0,-32,1,-3,-1,-4,1,-3,-1,-36,-1,-1,0,-4,1,-3,-1,-32,0 %N A343370 a(1) = 1; a(n) = Sum_{d|n, d < n} (-1)^d * a(d). %H A343370 Antti Karttunen, <a href="/A343370/b343370.txt">Table of n, a(n) for n = 1..16384</a> %H A343370 Antti Karttunen, <a href="/A343370/a343370.txt">Data supplement: n, a(n) computed for n = 1..100000</a> %F A343370 G.f.: x + Sum_{n>=1} (-1)^n * a(n) * x^(2*n) / (1 - x^n). %p A343370 a:= proc(n) option remember; `if`(n<2, 1, %p A343370 add((-1)^d*a(d), d=numtheory[divisors](n) minus {n})) %p A343370 end: %p A343370 seq(a(n), n=1..70); # _Alois P. Heinz_, Apr 12 2021 %t A343370 a[1] = 1; a[n_] := a[n] = Sum[If[d < n, (-1)^d a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 70}] %o A343370 (PARI) %o A343370 memoA343370 = Map(); %o A343370 A343370(n) = if(1==n,1,my(v); if(mapisdefined(memoA343370,n,&v), v, v = sumdiv(n,d,if(d<n,((-1)^d)*A343370(d),0)); mapput(memoA343370,n,v); (v))); \\ _Antti Karttunen_, Jan 02 2023 %Y A343370 Cf. A008683, A053850 (positions of 0's), A056913 (positions of 1's), A067856, A074206, A307778, A308077, A325144. %K A343370 sign %O A343370 1,4 %A A343370 _Ilya Gutkovskiy_, Apr 12 2021 %E A343370 Data section extended up to a(81) by _Antti Karttunen_, Jan 02 2023