This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343378 #6 Apr 16 2021 15:45:50 %S A343378 1,1,1,2,2,2,3,3,3,4,4,3,6,5,4,6,6,4,8,6,7,9,8,5,12,9,8,9,11,6,14,10, %T A343378 10,11,10,10,20,12,12,15,18,10,21,13,15,19,17,11,27,19,20,20,25,13,27, %U A343378 22,26,23,24,15,34,23,21,27,30,19,38,24,26,27,37 %N A343378 Number of strict integer partitions of n that are empty or such that (1) the smallest part divides every other part and (2) the greatest part is divisible by every other part. %C A343378 Alternative name: Number of strict integer partitions of n with a part dividing all the others and a part divisible by all the others. %e A343378 The a(1) = 1 through a(15) = 6 partitions (A..F = 10..15): %e A343378 1 2 3 4 5 6 7 8 9 A B C D E F %e A343378 21 31 41 42 61 62 63 82 A1 84 C1 C2 A5 %e A343378 51 421 71 81 91 821 93 841 D1 C3 %e A343378 621 631 A2 931 842 E1 %e A343378 B1 A21 C21 %e A343378 6321 8421 %t A343378 Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&And@@IntegerQ/@(#/Min@@#)&&And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}] %Y A343378 The first condition alone gives A097986. %Y A343378 The non-strict version is A130714 (Heinz numbers are complement of A343343). %Y A343378 The second condition alone gives A343347. %Y A343378 The opposite version is A343379. %Y A343378 The half-opposite versions are A343380 and A343381. %Y A343378 The strict complement is counted by A343382. %Y A343378 A000009 counts strict partitions. %Y A343378 A000070 counts partitions with a selected part. %Y A343378 A006128 counts partitions with a selected position. %Y A343378 A015723 counts strict partitions with a selected part. %Y A343378 A018818 counts partitions into divisors (strict: A033630). %Y A343378 A167865 counts strict chains of divisors > 1 summing to n. %Y A343378 A339564 counts factorizations with a selected factor. %Y A343378 Cf. A083710, A130689, A264401, A339562, A339563, A341450, A343346, A343377. %K A343378 nonn %O A343378 0,4 %A A343378 _Gus Wiseman_, Apr 16 2021