This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343379 #6 Apr 16 2021 15:45:57 %S A343379 1,0,0,0,0,1,0,2,1,3,3,5,3,9,9,12,12,18,18,27,27,36,41,51,51,73,80,96, %T A343379 105,132,137,177,188,230,253,303,320,398,431,508,550,659,705,847,913, %U A343379 1063,1165,1359,1452,1716,1856,2134,2329,2688,2894,3345,3622,4133 %N A343379 Number of strict integer partitions of n with no part dividing or divisible by all the other parts. %C A343379 Alternative name: Number of strict integer partitions of n that are either empty, or (1) have smallest part not dividing all the others and (2) have greatest part not divisible by all the others. %F A343379 The Heinz numbers for the non-strict version are A343338 = A342193 /\ A343337. %e A343379 The a(5) = 1 through a(13) = 9 partitions (empty column indicated by dot): %e A343379 (3,2) . (4,3) (5,3) (5,4) (6,4) (6,5) (7,5) (7,6) %e A343379 (5,2) (7,2) (7,3) (7,4) (5,4,3) (8,5) %e A343379 (4,3,2) (5,3,2) (8,3) (7,3,2) (9,4) %e A343379 (9,2) (10,3) %e A343379 (5,4,2) (11,2) %e A343379 (6,4,3) %e A343379 (6,5,2) %e A343379 (7,4,2) %e A343379 (8,3,2) %t A343379 Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}] %Y A343379 The first condition alone gives A341450. %Y A343379 The non-strict version is A343342 (Heinz numbers: A343338). %Y A343379 The second condition alone gives A343377. %Y A343379 The opposite version is A343378. %Y A343379 The half-opposite versions are A343380 and A343381. %Y A343379 The version for "or" instead of "and" is A343382. %Y A343379 A000009 counts strict partitions. %Y A343379 A000070 counts partitions with a selected part. %Y A343379 A006128 counts partitions with a selected position. %Y A343379 A015723 counts strict partitions with a selected part. %Y A343379 A018818 counts partitions into divisors (strict: A033630). %Y A343379 A167865 counts strict chains of divisors > 1 summing to n. %Y A343379 A339564 counts factorizations with a selected factor. %Y A343379 Cf. A083710, A097986, A200745, A264401, A338470, A339562, A342193, A343337, A343341, A343343, A343346, A343347. %K A343379 nonn %O A343379 0,8 %A A343379 _Gus Wiseman_, Apr 16 2021