This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343381 #6 Apr 16 2021 15:46:11 %S A343381 1,0,0,0,0,0,1,0,2,1,3,3,6,4,9,9,14,14,20,20,30,30,39,44,59,59,77,85, %T A343381 106,114,145,150,191,205,247,267,328,345,418,455,544,582,699,745,886, %U A343381 962,1117,1209,1430,1523,1778,1932,2225,2406,2792,3001,3456,3750 %N A343381 Number of strict integer partitions of n with a part dividing all the others but no part divisible by all the others. %C A343381 Alternative name: Number of strict integer partitions of n that are empty or (1) have smallest part dividing all the others and (2) have greatest part not divisible by all the others. %e A343381 The a(6) = 1 through a(16) = 14 partitions (empty column indicated by dot, A..D = 10..13): %e A343381 321 . 431 531 541 641 642 751 761 861 862 %e A343381 521 721 731 651 5431 851 951 871 %e A343381 4321 5321 741 6421 941 A41 961 %e A343381 831 7321 A31 B31 A42 %e A343381 921 B21 6531 B41 %e A343381 5421 6431 7431 D21 %e A343381 6521 7521 6541 %e A343381 7421 9321 7531 %e A343381 8321 54321 7621 %e A343381 8431 %e A343381 8521 %e A343381 9421 %e A343381 A321 %e A343381 64321 %t A343381 Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&And@@IntegerQ/@(#/Min@@#)&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}] %Y A343381 The first condition alone gives A097986. %Y A343381 The non-strict version is A343345 (Heinz numbers: A343340). %Y A343381 The second condition alone gives A343377. %Y A343381 The half-opposite versions are A343378 and A343379. %Y A343381 The opposite (and dual) version is A343380. %Y A343381 A000005 counts divisors. %Y A343381 A000009 counts strict partitions. %Y A343381 A000070 counts partitions with a selected part. %Y A343381 A006128 counts partitions with a selected position. %Y A343381 A015723 counts strict partitions with a selected part. %Y A343381 A018818 counts partitions into divisors (strict: A033630). %Y A343381 A167865 counts strict chains of divisors > 1 summing to n. %Y A343381 A339564 counts factorizations with a selected factor. %Y A343381 Cf. A083710, A130689, A200745, A264401, A339563, A341450, A343337, A343341, A343347, A343382. %K A343381 nonn %O A343381 0,9 %A A343381 _Gus Wiseman_, Apr 16 2021