1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 2
Offset: 1
The square-spiral starts with 1 and is then numbered with the ordered prime factors of the positive integers as follows:
.
11---5---2---3---3 .
| | .
2 2---2---3 2 2
| | | | |
2 5 1---2 2 2
| | | |
3 2---3---7---2 2
| |
13---2---7---3---5---2
.
a(1) = 1, the starting square of the knight.
a(2) = 2. Four squares the knight can step to from the starting square are numbered 2, all of which are the same distance form the origin, so the 2 with the lowest spiral number is chosen. This is the 2 at coordinates (2,-1) relative to the starting square which has an ordered spiral number of 10.
a(35) = 3. This is the first time a square greater than 2 is stepped to. The available squares after 33 steps are 3, 3, 3, 11, 5, and 47, and the 3 at coordinates (1,4) relative to the starting square is chosen because it is the closest number to that square.
a(365) = 41. This is the largest numbered square that is stepped to. The available squares after the 363rd step are 41, 157, 313, and 43, and 41 is the smallest of these.
a(370) = 3. This is the final square stepped to as no further unvisited square is available.
Comments