This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343418 #7 Apr 18 2021 22:33:43 %S A343418 11,29,41,61,73,97,131,137,139,149,151,157,167,179,191,211,227,229, %T A343418 233,241,251,283,293,307,313,331,347,373,383,389,397,401,449,463,521, %U A343418 577,607,631,641,647,653,661,673,677,701,709,719,727,757,769,811,821,823,829,857,859,877,887,907,919,929 %N A343418 Primes that occur in A343416. %C A343418 Terms are distinct and in numerical order, not the order they occur in A343416. %C A343418 If p, 6*p-1 and 19*p+4 are prime, then 19*p+4 = A343416(6*p-1) is a term. Dickson's conjecture implies that there are infinitely many such terms. %H A343418 Robert Israel, <a href="/A343418/b343418.txt">Table of n, a(n) for n = 1..4000</a> %e A343418 a(3) = 41 is a term because 41 = A343416(8) = A343416(10) and is prime. %p A343418 spf:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2]) end proc: %p A343418 f:= proc(n) local a,b; %p A343418 a:= spf(n); %p A343418 b:= numtheory:-sigma(n); %p A343418 a+b+spf(b)+numtheory:-sigma(a) %p A343418 end proc: %p A343418 S:= select(t -> t < 1000 and isprime(t), map(f, {$1..1000})): %p A343418 sort(convert(S,list)); %Y A343418 Cf. A343416. %K A343418 nonn %O A343418 1,1 %A A343418 _J. M. Bergot_ and _Robert Israel_, Apr 14 2021