This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343419 #37 Apr 22 2021 03:42:43 %S A343419 1,1,2,4,8,12,24,34,62,88,148,208,360,466,784,1082,1718,2278,3744, %T A343419 4902,7914,10486,16334,21728 %N A343419 Number of distinct sets { p(i) - p(j) : 1 <= i <= j <= n } where p ranges over all permutations of [n]. %C A343419 a(n) is even for n > 1. %F A343419 a(n) < 2 + 74*3^(n-6). %F A343419 a(n) <= 2*a(n-1) (conjectured). %e A343419 a(1) = 1: [[0]]. %e A343419 a(2) = 2: [[-1, 0], [0, 1]]. %e A343419 a(3) = 4: [[-2, -1, 0], [-2, -1, 0, 1], [-1, 0, 1, 2], [0, 1, 2]]. %e A343419 a(4) = 8: [[-3, -2, -1, 0], [-3, -2, -1, 0, 1], [-3, -2, -1, 0, 1, 2], [-2, -1, 0, 1, 2, 3], [-2, -1, 0, 1, 3], [-3, -1, 0, 1, 2], [-1, 0, 1, 2, 3], [0, 1, 2, 3]]. %e A343419 a(5) = 12: [[-4, -3, -2, -1, 0], [-4, -3, -2, -1, 0, 1], [-4, -3, -2, -1, 0, 1, 2], [-4, -3, -2, -1, 0, 1, 2, 3], [-4, -3, -2, -1, 0, 1, 3], [-3, -2, -1, 0, 1, 2, 3, 4], [-3, -2, -1, 0, 1, 2, 4], [-4, -2, -1, 0, 1, 2, 3], [-2, -1, 0, 1, 2, 3, 4], [-3, -1, 0, 1, 2, 3, 4], [-1, 0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]. %p A343419 b:= proc(s) option remember; `if`(s={}, {{}}, {seq(map(x-> %p A343419 {seq(j-i, j=s)} union x, b(s minus {i}))[], i=s)}) %p A343419 end: %p A343419 a:= n-> nops(b({$1..n})): %p A343419 seq(a(n), n=0..12); # _Alois P. Heinz_, Apr 15 2021 %o A343419 (Python) %o A343419 def perm(pmt,begin,end): %o A343419 global k %o A343419 global a_n %o A343419 if begin>=end: %o A343419 a=[] %o A343419 for x in range(1,len(pmt)): %o A343419 for y in range(0,x+1): %o A343419 a.append(pmt[y]-pmt[x]) %o A343419 new_list=[] %o A343419 for j in a: %o A343419 if j not in new_list: %o A343419 new_list.append(j) %o A343419 new_list.sort() %o A343419 k.append(new_list) %o A343419 m=[] %o A343419 for ss in k: %o A343419 if ss not in m: %o A343419 m.append(ss) %o A343419 k=m %o A343419 a_n=len(m) %o A343419 else: %o A343419 i=begin %o A343419 for num in range(begin,end): %o A343419 pmt[num],pmt[i]=pmt[i],pmt[num] %o A343419 perm(pmt,begin+1,end) %o A343419 pmt[num],pmt[i]=pmt[i],pmt[num] %o A343419 N=1 %o A343419 while True: %o A343419 k=[] %o A343419 a_n=0 %o A343419 pmt=[] %o A343419 for p in range(0,N): %o A343419 pmt.append(p+1) %o A343419 perm(pmt,0,len(pmt)) %o A343419 print("a(",N,")=",a_n) %o A343419 N=N+1 %o A343419 (Python) %o A343419 from itertools import permutations %o A343419 def a(n): return len(set(tuple(sorted(set(p[i] - p[j] for i in range(n) for j in range(i, n)))) for p in permutations(range(1, n+1)))) %o A343419 print([a(n) for n in range(10)]) # _Michael S. Branicky_, Apr 17 2021 %Y A343419 Cf. A000142. %K A343419 nonn,more %O A343419 0,3 %A A343419 _Baohua Tian_, Apr 15 2021 %E A343419 a(11)-a(16) from _Alois P. Heinz_, Apr 15 2021 %E A343419 a(17)-a(23) from _Bert Dobbelaere_, Apr 21 2021