This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343424 #28 May 17 2021 01:52:32 %S A343424 1,2,45,53,177,436,1239,3651,6463,6869,10753,19450,29721,33289,88907, %T A343424 93682,1137232,1516121,4361271,9428534,43778664,74738670,271442366, %U A343424 775223371,835126289,1736463189,3088442241,5054888590,11184483614,16993011938,30788570768,33342871740 %N A343424 Numbers k such that sopfr((k-1)!) is divisible by k, where sopfr(k) = A001414(k) = sum of primes, with repetition, dividing k. %C A343424 See A025281(k-1) for the values of sopfr((k-1)!). %H A343424 Martin Ehrenstein, <a href="/A343424/b343424.txt">Table of n, a(n) for n = 1..35</a> %e A343424 45 is a term as sopfr(44!) = 585 which is divisible by 45. %t A343424 sopfr[0] = sopfr[1] = 0; sopfr[n_] := Plus @@ Times @@@ FactorInteger[n]; sum = 0; s = {}; Do[sum += sopfr[n]; If[Divisible[sum, n + 1], AppendTo[s, n + 1]], {n, 0, 10^6}]; s (* _Amiram Eldar_, May 06 2021 *) %o A343424 (PARI) sopfr(n) = (n=factor(n))[, 1]~*n[, 2]; \\ A001414 %o A343424 isok(k) = !(sopfr((k-1)!) % k); \\ _Michel Marcus_, May 06 2021 %Y A343424 Cf. A001414, A025281, A027746. %K A343424 nonn %O A343424 1,2 %A A343424 _Scott R. Shannon_, Apr 15 2021 %E A343424 a(27) from _Amiram Eldar_, May 06 2021 %E A343424 a(28) and beyond from _Martin Ehrenstein_, May 16 2021