This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343453 #26 Dec 19 2024 11:46:19 %S A343453 0,-1,0,0,1,1,0,0,1,1,0,1,1,1,0,0,1,1,0,1,1,2,2,1,1,1,0,1,1,1,0,0,1,1, %T A343453 0,1,1,2,2,1,1,2,2,1,2,2,2,1,1,1,0,1,1,2,2,1,1,1,0,1,1,1,0,0,1,1,0,1, %U A343453 1,2,2,1,1,2,2,1,2,2,2,1,1,2,2,1,2,2,3 %N A343453 The number of 3's minus the number of 2's among the first n terms of A342101. %C A343453 It appears that the sequence never goes below -1 and increases without bound. %C A343453 It appears that if the first appearance of a number x occurs at index n and the first appearance of x+1 appears at index m then m/n approaches 4 as x increases. %H A343453 Kevin Ryde, <a href="https://user42.tuxfamily.org/seq-A342101-middle-delete/index.html">PARI/GP Code and Notes</a>. %e A343453 A342101 = [1, 2, 3, 1, 3, ...]. By the fifth term of A342101 we see 2 terms with value 3, and a single term with value 2, so a(5) = 2 - 1 = 1. %t A343453 Block[{a = {}, s = Nest[Join[#, Drop[#, {(Length[#] + 1)/2}]] &, Range[3], 6], c}, Array[Set[c[#], 0] &, 3]; Do[c[ s[[i]] ]++; AppendTo[a, c[3] - c[2]], {i, Min[Length@ s, 104]}]; a] (* _Michael De Vlieger_, May 01 2021 *) %o A343453 (Kotlin) %o A343453 fun a(iter: Int): List<Int> = runningSum(twosVersusThrees(iter)) %o A343453 fun runningSum(a: List<Int>) = a.drop(1).fold(listOf(a[0])) { acc, cur -> %o A343453 acc + (acc.last() + cur) %o A343453 } %o A343453 fun twosVersusThrees(iter: Int): List<Int> = removeMiddle(listOf(0,-1,1), iter) %o A343453 fun removeMiddle(initial: List<Int>, iter: Int): List<Int> { %o A343453 if (iter < 2) return initial %o A343453 val prev = removeMiddle(initial, iter-1) %o A343453 return prev + prev.subList(0, (prev.size - 1) / 2) + prev.subList((prev.size + 1) /2, prev.size) %o A343453 } %o A343453 (PARI) \\ See links. %Y A343453 Cf. A342101. %K A343453 sign %O A343453 1,22 %A A343453 _Matthew Malone_, Apr 15 2021