A343454 Numbers k such that k^2+2*A001414(k) and k^2-2*A001414(k) are primes.
21, 33, 35, 39, 111, 339, 473, 629, 735, 779, 795, 801, 959, 1025, 1119, 1149, 1245, 1253, 1281, 1575, 1589, 1695, 1851, 1919, 1961, 1985, 2199, 2315, 2523, 2561, 2681, 2759, 3003, 3065, 3189, 3233, 3315, 3443, 3893, 3983, 4175, 4299, 4359, 4375, 4455, 4503, 4693, 4925, 5247, 5585, 5609, 5703
Offset: 1
Keywords
Examples
a(3) = 35 is a term because A001414(35) = 12 and 35^2-2*12 = 1201 and 35^2+2*12 = 1249 are primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
spf:= n -> add(t[1]*t[2],t=ifactors(n)[2]): filter:= proc(n) local s; s:= spf(n); isprime(n^2-2*s) and isprime(n^2+2*s) end proc: select(filter, [seq(i,i=1..10000,2)]);
Comments