This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343471 #41 Mar 25 2022 06:27:44 %S A343471 2,2,2,2,2575723,7533777323,277535577223,5323733533375237, %T A343471 57552737757357223 %N A343471 Start of the first run of n or more consecutive primes using only prime digits. %C A343471 This is a variant of A352312. - _Bernard Schott_, Mar 24 2022 %H A343471 Chris K. Caldwell and G. L. Honaker, Jr., <a href="https://primes.utm.edu/curios/page.php?curio_id=41445">Prime Curios! 277535577223</a> %e A343471 a(1) = 2 because it is the first prime using only prime digits. %e A343471 a(2) = 2 because 2, 3 is the first pair of consecutive primes using only prime digits. %e A343471 a(5) = 2575723 because 2575723, 2575733, 2575753, 2575757, 2575777 is the first run of 5 consecutive primes using only prime digits. %o A343471 (Python) %o A343471 from sympy import nextprime, isprime %o A343471 from itertools import count, islice, product %o A343471 def onlypd(n): return set(str(n)) <= set("2357") %o A343471 def agen(): %o A343471 adict = {i:2 for i in range(1, 5)} %o A343471 for i in range(1, 5): yield 2 %o A343471 for digits in count(2): %o A343471 for p in product("2357", repeat=digits-1): %o A343471 for end in "37": %o A343471 t0 = t = int("".join(p) + end) %o A343471 run = 0 %o A343471 while isprime(t): %o A343471 run += 1 %o A343471 t = nextprime(t) %o A343471 if not onlypd(t): break %o A343471 if run not in adict: %o A343471 for r in range(max(adict)+1, run+1): %o A343471 adict[r] = t0 %o A343471 yield t0 %o A343471 print(list(islice(agen(), 6))) # _Michael S. Branicky_, Mar 11 2022 %Y A343471 Cf. A019546, A082755, A352312. %K A343471 nonn,base,hard,more %O A343471 1,1 %A A343471 _Metin Sariyar_, Apr 16 2021 %E A343471 a(8) from _Daniel Suteu_, Apr 22 2021 %E A343471 a(9) from _Michael S. Branicky_, Mar 15 2022