A343479 Prime numbers p == 2 (mod 3) such that p-1 has exactly one odd prime divisor and p+1 has exactly one prime divisor > 3 (counting prime divisors with multiplicity in both).
29, 41, 59, 83, 89, 113, 137, 167, 173, 179, 227, 233, 263, 269, 317, 347, 353, 359, 467, 479, 503, 557, 563, 593, 641, 653, 719, 773, 809, 887, 977, 983, 1097, 1187, 1193, 1283, 1307, 1367, 1433, 1439, 1487, 1493, 1523, 1619, 1697, 1823, 1907, 1997, 2063, 2153
Offset: 1
Keywords
Examples
29 is a term since it is prime, 29 = 3*9 + 2, 29-1 = 28 = 2^2 * 7 has only one odd prime divisor (7) and 29+1 = 30 = 2*3*5 has only one prime divisor (5) larger than 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Carlos Esparza and Lukas Gehring, Estimating the density of a set of primes with applications to group theory, arXiv:1810.08679 [math.NT], 2018.
Programs
-
Mathematica
q[n_] := Mod[n, 3] == 2 && PrimeQ[n] && PrimeQ[(n + 1)/2^IntegerExponent[n + 1, 2]/3^IntegerExponent[n + 1, 3]] && PrimeQ[(n - 1)/2^IntegerExponent[n - 1, 2]]; Select[Range[2000], q]
Comments