cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343485 Area of the convex hull around terdragon expansion level n, measured in unit triangles.

This page as a plain text file.
%I A343485 #12 Apr 25 2021 01:27:33
%S A343485 0,2,8,26,86,276,856,2586,7826,23628,71128,213546,641246,1925076,
%T A343485 5777416,17333706,52006586,156031788,468115048,1404358266,4213124006,
%U A343485 12639480276,37918617976,113755972026,341268358946,1023806051148,3071419747768,9214260306186
%N A343485 Area of the convex hull around terdragon expansion level n, measured in unit triangles.
%C A343485 Expansion level n comprises the first 3^n segments of the curve.
%H A343485 Kevin Ryde, <a href="/A343485/b343485.txt">Table of n, a(n) for n = 0..500</a>
%H A343485 Kevin Ryde, <a href="http://user42.tuxfamily.org/terdragon/index.html">Iterations of the Terdragon Curve</a>, see index "HA".
%H A343485 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4,4,6,-36,36,-36,27).
%F A343485 For n>=2, a(n) = (29/24)*3^n - (h/12)*3^floor(n/2) - (c/8) where h = 15,23,11,25 and c = 5,3,1,3 according as n == 0,1,2,3 (mod 4) respectively.
%F A343485 a(n) = 4*a(n-1) - 4*a(n-2) + 4*a(n-3) + 6*a(n-4) - 36*a(n-5) + 36*a(n-6) - 36*a(n-7) + 27*a(n-8), for n>=10.
%F A343485 G.f.: (2*x + 2*x^3 + 6*x^4 - 8*x^5 + 16*x^6 - 18*x^7 + 6*x^8 - 18*x^9) /( (1-x)*(1+x^2)*(1-9*x^4)*(1-3*x) ).
%F A343485 G.f.: (1/24)*( 16 + 16*x - 9/(1-x) - 6/(1+x^2) - (26+48*x)/(1-3*x^2) + (-4+2*x)/(1+3*x^2) + 29/(1-3*x) ).
%F A343485 Lim_{n->oo} a(n)/3^n = 29/24.
%e A343485 For n=1, the terdragon curve comprises 3 segments:
%e A343485     @---@      Convex hull vertices are marked "@".
%e A343485      \         They enclose an area of 2 unit triangles,
%e A343485   @---@        so a(1) = 2.
%e A343485 .
%e A343485 For n=2, the terdragon curve comprises 9 segments:
%e A343485     @---@
%e A343485      \         Convex hull vertices are marked "@".
%e A343485   @---*        They enclose an area of a(2) = 8
%e A343485    \ / \       unit triangle equivalents.
%e A343485     *---@
%e A343485      \
%e A343485   @---@
%o A343485 (PARI) my(h=[30,46,22,50]); a(n) = if(n<2,2*n, (29*3^n - h[n%4+1]*3^(n\2))\24);
%Y A343485 Cf. A343486 (fractal hull area), A341029 (dragon curve hull area).
%K A343485 nonn,easy
%O A343485 0,2
%A A343485 _Kevin Ryde_, Apr 17 2021