A343491 Number of representations of n! as a sum of 3 tetrahedral numbers (A000292).
1, 1, 1, 2, 2, 1, 2, 1, 3, 5, 2, 3, 6, 5, 8, 8, 7, 2, 7, 8, 3, 11, 2, 2
Offset: 1
Examples
a(4) = 2 because 4! = 0 + 4 + 20 = 4 + 10 + 10. a(24) = 2 because 24! = f(11393630) + f(118661018) + f(127041924) = f(81298034) + f(61098204) + f(143537134) where f = A000292.
Links
- Altug Alkan, A note on sequence
Programs
-
Mathematica
Table[Length[Solve[{i*(i + 1)*(i + 2) + j*(j + 1)*(j + 2) + k*(k + 1)*(k + 2) == 6*n!, i >= 0, j >= 0, k >= 0, i <= j, j <= k, k < (6*n!)^(1/3)}, Integers]], {n, 1, 10}] (* Vaclav Kotesovec, Apr 19 2021 *)
Comments