This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343499 #43 Jun 24 2024 08:47:53 %S A343499 1,33,245,1058,3129,8085,16813,33860,59541,103257,161061,259210, %T A343499 371305,554829,766605,1083528,1419873,1964853,2476117,3310482,4119185, %U A343499 5315013,6436365,8295700,9778145,12253065,14468481,17788154,20511177,25297965,28629181,34672912,39459945,46855809 %N A343499 a(n) = Sum_{k=1..n} gcd(k, n)^5. %H A343499 Seiichi Manyama, <a href="/A343499/b343499.txt">Table of n, a(n) for n = 1..10000</a> %F A343499 a(n) = Sum_{d|n} phi(n/d) * d^5. %F A343499 a(n) = Sum_{d|n} mu(n/d) * d * sigma_4(d). %F A343499 G.f.: Sum_{k >= 1} phi(k) * x^k * (1 + 26*x^k + 66*x^(2*k) + 26*x^(3*k) + x^(4*k))/(1 - x^k)^6. %F A343499 Dirichlet g.f.: zeta(s-1) * zeta(s-5) / zeta(s). - _Ilya Gutkovskiy_, Apr 18 2021 %F A343499 Sum_{k=1..n} a(k) ~ 315*zeta(5)*n^6 / (2*Pi^6). - _Vaclav Kotesovec_, May 20 2021 %F A343499 Multiplicative with a(p^e) = p^(e-1)*(p^(4*e+5) - p^(4*e) - p + 1)/(p^4-1). - _Amiram Eldar_, Nov 22 2022 %F A343499 a(n) = Sum_{1 <= i_1, ..., i_5 <= n} gcd(i_1, ..., i_5, n) = Sum_{d divides n} d * J_5(n/d), where the Jordan totient function J_5(n) = A059378(n). - _Peter Bala_, Jan 29 2024 %t A343499 a[n_] := Sum[GCD[k, n]^5, {k, 1, n}]; Array[a, 50] (* _Amiram Eldar_, Apr 18 2021 *) %t A343499 f[p_, e_] := p^(e-1)*(p^(4*e+5) - p^(4*e) - p + 1)/(p^4-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* _Amiram Eldar_, Nov 22 2022 *) %o A343499 (PARI) a(n) = sum(k=1, n, gcd(k, n)^5); %o A343499 (PARI) a(n) = sumdiv(n, d, eulerphi(n/d)*d^5); %o A343499 (PARI) a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 4)); %o A343499 (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+26*x^k+66*x^(2*k)+26*x^(3*k)+x^(4*k))/(1-x^k)^6)) %o A343499 (Magma) %o A343499 A343499:= func< n | (&+[d^5*EulerPhi(Floor(n/d)): d in Divisors(n)]) >; %o A343499 [A343499(n): n in [1..50]]; // _G. C. Greubel_, Jun 24 2024 %o A343499 (SageMath) %o A343499 def A343499(n): return sum(k^5*euler_phi(n/k) for k in (1..n) if (k).divides(n)) %o A343499 [A343499(n) for n in range(1,51)] # _G. C. Greubel_, Jun 24 2024 %Y A343499 Column 5 of A343510. %Y A343499 Cf. A000010, A001159 (sigma_4(n)), A018804, A054612, A059378, A069097, A332517, A342423, A342433, A343497, A343498, A344524. %K A343499 nonn,mult,easy %O A343499 1,2 %A A343499 _Seiichi Manyama_, Apr 17 2021