This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343505 #10 Apr 18 2021 10:21:16 %S A343505 1,1,2,2,4,1,6,3,6,2,60,2,120,3,3,6,1008,4,51480,1,4,30,6930,1,140,36, %T A343505 60,20,16380,4,243374040,12,105,504,12,6,6126120,4680,168,3,314954640, %U A343505 10,209969760,24,4,180180,1790848659600,6,924,6,660,1260,8303710615200 %N A343505 a(n) is the least common multiple of the nonzero digits in factorial base expansion of 1/n. %C A343505 See the Wikipedia link for the construction method of 1/n in factorial base. %H A343505 Rémy Sigrist, <a href="/A343505/b343505.txt">Table of n, a(n) for n = 1..5000</a> %H A343505 Rémy Sigrist, <a href="/A343505/a343505.png">Colored logarithmic scatterplot of the sequence for n = 1..25000</a> (where the color is function of A052126(n)) %H A343505 Wikipedia, <a href="https://en.wikipedia.org/wiki/Factorial_number_system#Fractional_values">Factorial number system (Fractional values)</a> %H A343505 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a> %e A343505 The first terms, alongside 1/n in factorial base, are: %e A343505 n a(n) 1/n in factorial base %e A343505 -- ----- ----------------------------------------- %e A343505 1 1 1 %e A343505 2 1 0.1 %e A343505 3 2 0.0 2 %e A343505 4 2 0.0 1 2 %e A343505 5 4 0.0 1 0 4 %e A343505 6 1 0.0 1 %e A343505 7 6 0.0 0 3 2 0 6 %e A343505 8 3 0.0 0 3 %e A343505 9 6 0.0 0 2 3 2 %e A343505 10 2 0.0 0 2 2 %e A343505 11 60 0.0 0 2 0 5 3 1 4 0 10 %e A343505 12 2 0.0 0 2 %e A343505 13 120 0.0 0 1 4 1 2 5 4 8 5 0 12 %e A343505 14 3 0.0 0 1 3 3 3 %e A343505 15 3 0.0 0 1 3 %e A343505 16 6 0.0 0 1 2 3 %e A343505 17 1008 0.0 0 1 2 0 2 3 6 8 9 0 9 2 7 0 16 %e A343505 18 4 0.0 0 1 1 4 %e A343505 19 51480 0.0 0 1 1 1 6 2 0 9 5 2 6 11 11 13 8 0 18 %e A343505 20 1 0.0 0 1 1 %o A343505 (PARI) a(n) = my (v=1, f=1/n); for (r=2, oo, if (f==0, return (v), floor(f), v=lcm(v, floor(f))); f=frac(f)*r) %Y A343505 Cf. A052126, A294168, A343504. %K A343505 nonn,look,base %O A343505 1,3 %A A343505 _Rémy Sigrist_, Apr 17 2021