This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343510 #47 Feb 16 2025 08:34:02 %S A343510 1,1,3,1,5,5,1,9,11,8,1,17,29,22,9,1,33,83,74,29,15,1,65,245,274,129, %T A343510 55,13,1,129,731,1058,629,261,55,20,1,257,2189,4162,3129,1411,349,92, %U A343510 21,1,513,6563,16514,15629,8085,2407,596,105,27,1,1025,19685,65794,78129,47515,16813,4388,789,145,21 %N A343510 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{j=1..n} gcd(j, n)^k. %H A343510 Seiichi Manyama, <a href="/A343510/b343510.txt">Antidiagonals n = 1..140, flattened</a> %H A343510 Peter Bala, <a href="/A368743/a368743.pdf">GCD sum theorems. Two Multivariable Cesaro Type Identities</a>. %H A343510 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EulerianNumber.html">Eulerian Number</a> and <a href="https://mathworld.wolfram.com/EulersNumberTriangle.html">Euler's Number Triangle</a> %F A343510 G.f. of column k: Sum_{i>=1} phi(i) * ( Sum_{j=1..k} A008292(k, j) * x^(i*j) )/(1 - x^i)^(k+1). %F A343510 T(n,k) = Sum_{d|n} phi(n/d) * d^k. %F A343510 T(n,k) = Sum_{d|n} mu(n/d) * d * sigma_{k-1}(d). %F A343510 Dirichlet g.f. of column k: zeta(s-1) * zeta(s-k) / zeta(s). - _Ilya Gutkovskiy_, Apr 18 2021 %F A343510 T(n,k) = Sum_{j=1..n} (n/gcd(n,j))^k*phi(gcd(n,j))/phi(n/gcd(n,j)). - _Richard L. Ollerton_, May 10 2021 %F A343510 T(n,k) = Sum_{1 <= j_1, j_2, ..., j_k <= n} gcd(j_1, j_2, ..., j_k)^2 = Sum_{d divides n} d * J_k(n/d), where J_k(n) denotes the k-th Jordan totient function. - _Peter Bala_, Jan 29 2024 %e A343510 G.f. of column 3: Sum_{i>=1} phi(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^4. %e A343510 Square array begins: %e A343510 1, 1, 1, 1, 1, 1, 1, ... %e A343510 3, 5, 9, 17, 33, 65, 129, ... %e A343510 5, 11, 29, 83, 245, 731, 2189, ... %e A343510 8, 22, 74, 274, 1058, 4162, 16514, ... %e A343510 9, 29, 129, 629, 3129, 15629, 78129, ... %e A343510 15, 55, 261, 1411, 8085, 47515, 282381, ... %e A343510 13, 55, 349, 2407, 16813, 117655, 823549, ... %t A343510 T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * #^k &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Apr 18 2021 *) %o A343510 (PARI) T(n, k) = sum(j=1, n, gcd(j, n)^k); %o A343510 (PARI) T(n, k) = sumdiv(n, d, eulerphi(n/d)*d^k); %o A343510 (PARI) T(n, k) = sumdiv(n, d, moebius(n/d)*d*sigma(d, k-1)); %Y A343510 Columns k=1..7 give A018804, A069097, A343497, A343498, A343499, A343508, A343509. %Y A343510 T(n-2,n) gives A342432. %Y A343510 T(n-1,n) gives A342433. %Y A343510 T(n,n) gives A332517. %Y A343510 T(n,n+1) gives A321294. %Y A343510 Cf. A008292, A343516. %K A343510 nonn,tabl,easy %O A343510 1,3 %A A343510 _Seiichi Manyama_, Apr 17 2021