This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343511 #35 Apr 28 2021 20:41:04 %S A343511 1,2,2,6,2,10,2,42,6,10,2,146,2,10,10,1806,2,146,2,146,10,10,2,23226, %T A343511 6,10,42,146,2,314,2,3263442,10,10,10,42814,2,10,10,23226,2,314,2,146, %U A343511 146,10,2,542731938,6,146,10,146,2,23226,10,23226,10,10,2,141578,2,10,146,10650056950806,10 %N A343511 a(n) = 1 + Sum_{d|n, d < n} a(d)^2. %C A343511 a(n) depends only on the prime signature of n (see formulas). - _Bernard Schott_, Apr 24 2021 %H A343511 Alois P. Heinz, <a href="/A343511/b343511.txt">Table of n, a(n) for n = 1..3000</a> %H A343511 <a href="/index/Pri#prime_signature">Index entries for sequences related to prime signature</a> %F A343511 G.f.: x / (1 - x) + Sum_{n>=1} a(n)^2 * x^(2*n) / (1 - x^n). %F A343511 a(p^k) = A007018(k) for p prime. %F A343511 From _Bernard Schott_, Apr 24 2021: (Start) %F A343511 a(A006881(n)) = 10 for signature [1, 1]. %F A343511 a(A054753(n)) = 146 for signature [2, 1]. %F A343511 a(A007304(n)) = 314 for signature [1, 1, 1]. %F A343511 a(A065036(n)) = 23226 for signature [3, 1]. %F A343511 a(A085986(n)) = 42814 for signature [2, 2]. %F A343511 a(A085987(n)) = 141578 for signature [2, 1, 1]. (End) %p A343511 a:= proc(n) option remember; %p A343511 1+add(a(d)^2, d=numtheory[divisors](n) minus {n}) %p A343511 end: %p A343511 seq(a(n), n=1..65); # _Alois P. Heinz_, Apr 17 2021 %t A343511 a[n_] := a[n] = 1 + Sum[If[d < n, a[d]^2, 0], {d, Divisors[n]}]; Table[a[n], {n, 65}] %o A343511 (Python) %o A343511 from functools import lru_cache %o A343511 from sympy import divisors %o A343511 @lru_cache(maxsize=None) %o A343511 def A343511(n): return 1+sum(A343511(d)**2 for d in divisors(n) if d < n) # _Chai Wah Wu_, Apr 17 2021 %o A343511 (PARI) lista(nn) = {my(va = vector(nn)); for (n=1, nn, va[n] = 1 + sumdiv(n, d, if (d<n, va[d]^2));); va;} \\ _Michel Marcus_, Apr 18 2021 %Y A343511 Cf. A025487, A006881, A007018, A007304, A067824, A082588, A333120. %K A343511 nonn %O A343511 1,2 %A A343511 _Ilya Gutkovskiy_, Apr 17 2021