This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343524 #29 Apr 25 2021 13:10:07 %S A343524 0,1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,121,131,141,151,161, %T A343524 171,181,191,232,242,252,262,272,282,292,343,353,363,373,383,393,454, %U A343524 464,474,484,494,565,575,585,595,676,686,696,787,797,898,1221,1331 %N A343524 Palindromes with digits strictly increasing up to the middle digit. %C A343524 The maximum term in the sequence is 123456789987654321, if leading zeros are not allowed. %H A343524 Michael S. Branicky, <a href="/A343524/b343524.txt">Table of n, a(n) for n = 1..1023</a> %e A343524 121 and 1221 are legal terms but 122221 is not, since the digits 2,2 at positions 2 and 3 are not increasing. %o A343524 (Perl) %o A343524 #!/usr/bin/perl %o A343524 open(OUT,">incrDecrPalindrome.txt")||die "open fail OUT\n"; %o A343524 foreach $cand (0..100000){ %o A343524 @a=split("",$cand); %o A343524 $b = join("",reverse @a); %o A343524 next unless $cand==$b; # palindromes only %o A343524 $n = int(@a/2.); %o A343524 $n-- if &is_even(0+@a); # backoff if even count of digits %o A343524 foreach $i (1..$n){ %o A343524 goto skip_num unless $a[$i-1] < $a[$i]; %o A343524 } %o A343524 print OUT "$cand,"; %o A343524 skip_num:; %o A343524 print ""; %o A343524 } %o A343524 print OUT "\n"; %o A343524 ########################################## %o A343524 sub is_even{ $_[0]/2. == int $_[0]/2. } %o A343524 ########################################## %o A343524 (Python) %o A343524 from itertools import combinations %o A343524 A343524_list = [0] %o A343524 for l in range(1,4): %o A343524 for d in combinations('123456789',l): %o A343524 s = ''.join(d) %o A343524 A343524_list.append(int(s+s[-2::-1])) %o A343524 for d in combinations('123456789',l): %o A343524 s = ''.join(d) %o A343524 A343524_list.append(int(s+s[::-1])) # _Chai Wah Wu_, Apr 24 2021 %Y A343524 Cf. A002113, A009993, A062351 (primes), A134941. %K A343524 nonn,base,fini,full %O A343524 1,3 %A A343524 _James S. DeArmon_, Apr 18 2021 %E A343524 Terms < 100 prepended by _Rémy Sigrist_, Apr 25 2021