This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343526 #40 Aug 19 2021 12:55:32 %S A343526 1,8,8,15,8,64,8,22,15,64,8,120,8,64,64,29,8,120,8,120,64,64,8,176,15, %T A343526 64,22,120,8,512,8,36,64,64,64,225,8,64,64,176,8,512,8,120,120,64,8, %U A343526 232,15,120,64,120,8,176,64,176,64,64,8,960,8,64,120,43,64,512,8,120,64,512,8 %N A343526 Number of divisors of n^7. %H A343526 Seiichi Manyama, <a href="/A343526/b343526.txt">Table of n, a(n) for n = 1..10000</a> %F A343526 a(n) = A000005(A001015(n)). %F A343526 Multiplicative with a(p^e) = 7*e+1. %F A343526 a(n) = Sum_{d|n} 7^omega(d). %F A343526 G.f.: Sum_{k>=1} 7^omega(k) * x^k/(1 - x^k). %F A343526 Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 6/p^s). - _Vaclav Kotesovec_, Aug 19 2021 %t A343526 Table[DivisorSigma[0, n^7], {n, 1, 100}] (* _Amiram Eldar_, May 15 2021 *) %o A343526 (PARI) a(n) = numdiv(n^7); %o A343526 (PARI) a(n) = prod(k=1, #f=factor(n)[, 2], 7*f[k]+1); %o A343526 (PARI) a(n) = sumdiv(n, d, 7^omega(d)); %o A343526 (PARI) my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 7^omega(k)*x^k/(1-x^k))) %o A343526 (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + 6*X)/(1 - X)^2)[n], ", ")) \\ _Vaclav Kotesovec_, Aug 19 2021 %Y A343526 Column k=7 of A343656. %Y A343526 Cf. A000005, A001015. %K A343526 nonn,mult %O A343526 1,2 %A A343526 _Seiichi Manyama_, May 15 2021