cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343527 Number of ordered quadruples (w, x, y, z) with gcd(w, x, y, z) = 1 and 1 <= {w, x, y, z} <= 2^n.

Original entry on oeis.org

1, 15, 239, 3823, 60735, 972191, 15517679, 248252879, 3969108895, 63506982943, 1015951568815, 16255093526239, 260068569617727, 4161109496115135, 66577084386669199, 1065232436999055375, 17043668344393625999, 272698739815301095247, 4363176901343767529551, 69810828455823683068415, 1116973047989955380768527
Offset: 0

Views

Author

Karl-Heinz Hofmann, Apr 18 2021

Keywords

Examples

			.
For n=3, the size of the gris is 8 X 8 X 8 X 8:
.
              o------------x(w=8)-------------o
             /|.                            ./ |
            / |.                           ./  |
           /  |.                          ./   |
          /   |.                         ./    |
         /    |.                      z(w=8)   |
        /     |.                      . /      |
       /      |.                     . /       |
      /       |.                   .  /     y(w=8)
     o------------------------------.o         |
    |\        /|¯¯¯¯¯¯x(w=1)¯¯¯¯¯¯/. |         |
    | w      / |                 /.| |         |
    |  \ z(w=1)|                /. | |         |
    |   \  /   |y(w=1)         /.  | |         |
    |    \/-------------------/.   | |         |
    |     |                   |    | |         |        w | sums
    |     |  Cube at w = 1    |    | |         |      ----+-----
    |     |    8 X 8 X 8      | _ _| |---------o        1 |  512
    |     |    contains       |    / |         /        2 |  448
    |     |       512         |   /  |        /         3 |  504
    |     |    completely     |  /   |       /          4 |  448
    |     | reduced fractions | /    |      /           5 |  511
    |     |                   |/     |     /            6 |  441
    |     /------------------- \     |    /             7 |  511
    |    /                      \    |   /              8 |  448
    |   w                        w   |  /             ----+-----
    |  /                          \  | /     sum for a(3) | 3823
    | /                            \ |/
    o -------------------------------o
		

Crossrefs

Programs

  • Python
    from labmath import mobius
    def A343527(n): return sum(mobius(k)*(2**n//k)**4 for k in range(1, 2**n+1))

Formula

Lim_{n->infinity} a(n)/2^(4*n) = 1/zeta(4) = A215267 = 90/Pi^4.
a(n) = A082540(2^n).

Extensions

Edited by N. J. A. Sloane, Jun 13 2021