A343527 Number of ordered quadruples (w, x, y, z) with gcd(w, x, y, z) = 1 and 1 <= {w, x, y, z} <= 2^n.
1, 15, 239, 3823, 60735, 972191, 15517679, 248252879, 3969108895, 63506982943, 1015951568815, 16255093526239, 260068569617727, 4161109496115135, 66577084386669199, 1065232436999055375, 17043668344393625999, 272698739815301095247, 4363176901343767529551, 69810828455823683068415, 1116973047989955380768527
Offset: 0
Keywords
Examples
. For n=3, the size of the gris is 8 X 8 X 8 X 8: . o------------x(w=8)-------------o /|. ./ | / |. ./ | / |. ./ | / |. ./ | / |. z(w=8) | / |. . / | / |. . / | / |. . / y(w=8) o------------------------------.o | |\ /|¯¯¯¯¯¯x(w=1)¯¯¯¯¯¯/. | | | w / | /.| | | | \ z(w=1)| /. | | | | \ / |y(w=1) /. | | | | \/-------------------/. | | | | | | | | | w | sums | | Cube at w = 1 | | | | ----+----- | | 8 X 8 X 8 | _ _| |---------o 1 | 512 | | contains | / | / 2 | 448 | | 512 | / | / 3 | 504 | | completely | / | / 4 | 448 | | reduced fractions | / | / 5 | 511 | | |/ | / 6 | 441 | /------------------- \ | / 7 | 511 | / \ | / 8 | 448 | w w | / ----+----- | / \ | / sum for a(3) | 3823 | / \ |/ o -------------------------------o
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..52 (n = 0..31 from Karl-Heinz Hofmann)
Programs
-
Python
from labmath import mobius def A343527(n): return sum(mobius(k)*(2**n//k)**4 for k in range(1, 2**n+1))
Extensions
Edited by N. J. A. Sloane, Jun 13 2021