This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343536 #61 Jul 06 2025 17:58:19 %S A343536 1,428,573,725,727,738,846,7810,8093,28023,36354,36365,36464,63636, %T A343536 254544,277851,297422,326734,673267,673368,2889810,4545454,4545465, %U A343536 5454547,5454646,24275425,29411775,47058823,52941178,94117748,146407310,263157795,267735365,285714186 %N A343536 Positive numbers k such that the decimal expansion of k^2 appears in the concatenation of the first k positive integers. %C A343536 A030467 is a subsequence. - _Chai Wah Wu_, Jun 07 2021 %H A343536 Chai Wah Wu, <a href="/A343536/b343536.txt">Table of n, a(n) for n = 1..116</a> %e A343536 428^2 = 183184, which appears in the concatenation of the first 428 positive integers at 183,184, i.e., (183184), so 428 is a term. %e A343536 725^2 = 525625, which appears in the concatenation of the first 725 positive integers at 255,256,257, i.e., 25(525625)7, so 725 is a term. %t A343536 Select[Range@1000,StringContainsQ[""<>ToString/@Range@#,ToString[#^2]]&] (* _Giorgos Kalogeropoulos_, Apr 24 2021 *) %t A343536 Select[Range[68*10^4],SequenceCount[Flatten[IntegerDigits/@Range[#]],IntegerDigits[#^2]]>0&] (* The program generates the first 20 terms of the sequence. *) (* _Harvey P. Dale_, Jul 06 2025 *) %o A343536 (Java) %o A343536 public class Oeis2 { %o A343536 public static void main(String[] args) { %o A343536 StringBuilder str = new StringBuilder(); %o A343536 long n = 1; %o A343536 while (true) { %o A343536 str.append(n); %o A343536 if (str.indexOf(String.valueOf(n * n)) >= 0) { %o A343536 System.out.print(n + ", "); %o A343536 } %o A343536 n++; %o A343536 } %o A343536 } %o A343536 } %o A343536 (PARI) f(n) = my(s=""); for(k=1, n, s=Str(s, k)); s; \\ from A007908 %o A343536 isok(k) = #strsplit(f(k), Str(k^2)) > 1; \\ _Michel Marcus_, May 02 2021 %o A343536 (Python) %o A343536 A343536_list, k, s = [], 1, '1' %o A343536 while k < 10**6: %o A343536 if str(k**2) in s: %o A343536 A343536_list.append(k) %o A343536 k += 1 %o A343536 s += str(k) # _Chai Wah Wu_, Jun 06 2021 %Y A343536 Cf. A007908, A030467, A259379. %K A343536 nonn,base %O A343536 1,2 %A A343536 _John R Phelan_, Apr 18 2021 %E A343536 More terms from _Jinyuan Wang_, Apr 30 2021