This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343541 #31 Dec 10 2024 12:28:49 %S A343541 2,2,3,2,4,3,3,5,4,6,2,2,7,7,4,8,8,6,6,9,9,2,3,10,5,6,6,5,11,8,3,12, %T A343541 12,5,3,13,13,13,5,6,6,14,14,10,10,15,15,5,5,11,11,16,16,2,3,4,5,17, %U A343541 17,17,10,18,18,18,18,13,13,19,19,19 %N A343541 For n > 1, a(n) is the largest base b <= prime(n)-1 such that the digits of prime(n)-1 in base b contain the digit b-1. %H A343541 Robert Israel, <a href="/A343541/b343541.txt">Table of n, a(n) for n = 2..10000</a> %F A343541 a(n) <= (1 + sqrt(4*prime(n) - 3))/2 for all n. Prime(n), which is 111 in some base Q, has a(n) = Q+1. Example: 31 = 6*5 + 1 and it is 111 in base 5. - _Devansh Singh_, Nov 22 2021 %p A343541 f:= proc(n) local p,b,L; %p A343541 p:= ithprime(n); %p A343541 for b from floor((1 + sqrt(4*p - 3))/2) by -1 do %p A343541 L:= convert(p-1,base,b); %p A343541 if member(b-1,L) then return b fi %p A343541 od; %p A343541 end proc: %p A343541 map(f, [$2 .. 100]); # _Robert Israel_, Dec 10 2024 %t A343541 Table[Max@Select[Range[2,Prime@n-1],MemberQ[IntegerDigits[Prime@n-1,#],#-1]&],{n,2,71}] (* _Giorgos Kalogeropoulos_, Nov 22 2021 *) %o A343541 (Python) %o A343541 import sympy %o A343541 def a_n(N): %o A343541 a_n=[2] %o A343541 for i in sympy.primerange(5, N+1): %o A343541 a_n.append(A338295(i-1)) %o A343541 print(a_n) %o A343541 def A338295(n): %o A343541 checker=0 %o A343541 for b in range(n//2, 1,-1): %o A343541 checker=main_base_check(n, b) %o A343541 if checker!=0: %o A343541 break %o A343541 return checker %o A343541 def main_base_check(m, b): %o A343541 while m!=0: %o A343541 if m%b == b-1: %o A343541 return b %o A343541 m = m//b %o A343541 return 0 %o A343541 a_n(500) %o A343541 (PARI) a(n) = my(q=prime(n)-1); forstep(b=q, 2, -1, if (vecmax(digits(q, b)) == b-1, return (b))); \\ _Michel Marcus_, Apr 19 2021 %Y A343541 Cf. A000040, A338295. %K A343541 nonn,base,look %O A343541 2,1 %A A343541 _Devansh Singh_, Apr 18 2021