cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343557 Indices of the prime factors of Fermat numbers in the sequence of primes.

This page as a plain text file.
%I A343557 #36 Sep 06 2024 15:16:28
%S A343557 2,3,7,55,116,6543,10847,23974,27567,76709,177975,457523,887643,
%T A343557 1625567,2751966,3772007,9385401,42401669,61136051,301137372,
%U A343557 2946723445,7632981296,24728168164,98261951745,99582868271,159657063059,231641062432,851793186025,870658222248
%N A343557 Indices of the prime factors of Fermat numbers in the sequence of primes.
%H A343557 Amiram Eldar, <a href="/A343557/b343557.txt">Table of n, a(n) for n = 1..50</a>
%H A343557 <a href="/index/Pri">Index entries for sequences that are related to primes dividing Fermat numbers</a>.
%F A343557 a(n) = A000720(A023394(n)).
%F A343557 A000040(a(n)) = A023394(n).
%e A343557 A000040(a(5)) = A000040(116) = 641 = A023394(5).
%p A343557 q:=n->(irem(2^(2^padic:-ordp(ithprime(n)-1, 2))-1, ithprime(n)) = 0):
%p A343557 select(q, [$1..10^5])[]; # _Lorenzo Sauras Altuzarra_, Feb 20 2023
%o A343557 (PARI) is_a023394(p)=p>2 && Mod(2,p)^lift(Mod(2,znorder(Mod(2,p)))^p)==1 && isprime(p) \\ after _Charles R Greathouse IV_ in A023394
%o A343557 my(i=1); forprime(p=1, , if(is_a023394(p), print1(i, ", ")); i++) \\ _Felix Fröhlich_, Apr 30 2021
%Y A343557 Cf. A000040 (primes), A000720 (primepi), A023394 (prime factors of Fermat primes).
%Y A343557 Supersequence of A159611.
%K A343557 nonn
%O A343557 1,1
%A A343557 _Lorenzo Sauras Altuzarra_, Apr 28 2021
%E A343557 More terms from _Michel Marcus_, Apr 29 2021
%E A343557 More terms from _Amiram Eldar_, Apr 29 2021