cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343568 a(n) = Sum_{d|n} (n/d)^(n/d) * binomial(d+n-1,n).

This page as a plain text file.
%I A343568 #11 Apr 25 2021 02:22:11
%S A343568 1,7,37,311,3251,47419,825259,16786615,387446284,10000130757,
%T A343568 285312023327,8916102467195,302875111792553,11112006858124501,
%U A343568 437893890458947787,18446744074296533175,827240261887503567287,39346408075308452154628
%N A343568 a(n) = Sum_{d|n} (n/d)^(n/d) * binomial(d+n-1,n).
%F A343568 a(n) = [x^n] Sum_{k>=1} (k * x)^k/(1 - x^k)^(n+1).
%t A343568 a[n_] := DivisorSum[n, (n/#)^(n/#) * Binomial[# + n - 1, n] &]; Array[a, 20] (* _Amiram Eldar_, Apr 25 2021 *)
%o A343568 (PARI) a(n) = sumdiv(n, d, (n/d)^(n/d)*binomial(d+n-1, n));
%Y A343568 Cf. A343549, A343567.
%K A343568 nonn
%O A343568 1,2
%A A343568 _Seiichi Manyama_, Apr 20 2021