cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343582 a(n) = (-1)^n*n!*[x^n] exp(-3*x)/(1 - 2*x).

Original entry on oeis.org

1, 1, 5, -3, 105, -807, 10413, -143595, 2304081, -41453775, 829134549, -18240782931, 437779321785, -11382260772087, 318703306401405, -9561099177693243, 305955173729230497, -10402475906664696735, 374489132640316502949, -14230587040330864850595, 569223481613238080808201
Offset: 0

Views

Author

Peter Luschny, Apr 24 2021

Keywords

Comments

The row polynomials of the rencontres numbers (A008290) evaluated at -1/2 and normalized by (-2)^n.

Crossrefs

Programs

  • Maple
    egf := exp(-3*x)/(1 - 2*x): ser := series(egf, x, 32):
    seq((-1)^n*n!*coeff(ser, x, n), n=0..20);
  • Mathematica
    a[n_] := (-2)^n Sum[Binomial[n, k] Subfactorial[n - k] (-2)^(-k), {k, 0, n}];
    Table[a[n], {n, 0, 20}]
  • Python
    def A343582():
        a, b, n = 1, 5, 3
        yield 1
        yield a
        while True:
            yield b
            a, b = b, 6*(n - 1)*a - (2*n - 3)*b
            n += 1
    a = A343582(); print([next(a) for _ in range(21)])

Formula

a(n) = (-2)^n*Sum_{k=0..n} binomial(n, k)*subfactorial(n - k)*(-1/2)^k.
a(n) = 6*(n - 1)*a(n - 2) - (2*n - 3)*a(n - 1) for n >= 3.