A343582 a(n) = (-1)^n*n!*[x^n] exp(-3*x)/(1 - 2*x).
1, 1, 5, -3, 105, -807, 10413, -143595, 2304081, -41453775, 829134549, -18240782931, 437779321785, -11382260772087, 318703306401405, -9561099177693243, 305955173729230497, -10402475906664696735, 374489132640316502949, -14230587040330864850595, 569223481613238080808201
Offset: 0
Keywords
Programs
-
Maple
egf := exp(-3*x)/(1 - 2*x): ser := series(egf, x, 32): seq((-1)^n*n!*coeff(ser, x, n), n=0..20);
-
Mathematica
a[n_] := (-2)^n Sum[Binomial[n, k] Subfactorial[n - k] (-2)^(-k), {k, 0, n}]; Table[a[n], {n, 0, 20}]
-
Python
def A343582(): a, b, n = 1, 5, 3 yield 1 yield a while True: yield b a, b = b, 6*(n - 1)*a - (2*n - 3)*b n += 1 a = A343582(); print([next(a) for _ in range(21)])
Formula
a(n) = (-2)^n*Sum_{k=0..n} binomial(n, k)*subfactorial(n - k)*(-1/2)^k.
a(n) = 6*(n - 1)*a(n - 2) - (2*n - 3)*a(n - 1) for n >= 3.
Comments