This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343594 #23 Apr 26 2021 21:37:05 %S A343594 1,5,17,25,31,41,63,92,151,170,202,221,263,266,278,322,327,347,364, %T A343594 401,404,412,421,423,437,467,470,482,490,498,501,515,519,543,558,578, %U A343594 590,612,623,636,646,647,671,683,685,705,707,717,718,726,764,785,795,859,867,872,875,881,890,892,897 %N A343594 Numbers k that, when written in all bases from base 2 to base 10, are a substring of k^k when written in the same base. %e A343594 5 is a term. See below table: %e A343594 . %e A343594 base | 5 in base | 5^5 in base %e A343594 ---------+-------------+------------- %e A343594 10 5 3125 %e A343594 9 5 4252 %e A343594 8 5 6065 %e A343594 7 5 12053 %e A343594 6 5 22245 %e A343594 5 10 100000 %e A343594 4 11 300311 %e A343594 3 12 11021202 %e A343594 2 101 110000110101 %e A343594 . %e A343594 5^5 in all bases contains 5 in that base as a substring. %o A343594 (Python) %o A343594 from sympy.ntheory import digits %o A343594 def nstr(n, b): return "".join(map(str, digits(n, b=b)[1:])) %o A343594 def ok(k): return all(nstr(k, b) in nstr(k**k, b) for b in range(10, 1, -1)) %o A343594 print(list(filter(ok, range(900)))) # _Michael S. Branicky_, Apr 25 2021 %o A343594 (PARI) str(v) = my(s=""); for (k=1, #v, s = concat(s, Str(v[k]))); s; %o A343594 isok(k) = {for (b=2, 10, my(kb = digits(k, b), kkb = digits(k^k, b)); if (#strsplit(str(kkb), str(kb)) <=1 , return (0));); return (1);} \\ _Michel Marcus_, Apr 26 2021 %Y A343594 Cf. A049329, A045537, A051248. %K A343594 nonn,base %O A343594 1,2 %A A343594 _Scott R. Shannon_, Apr 21 2021