This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343599 #24 Jul 27 2024 23:52:47 %S A343599 1,1,4,1,6,18,1,8,32,88,1,10,50,170,450,1,12,72,292,912,2364,1,14,98, %T A343599 462,1666,4942,12642,1,16,128,688,2816,9424,27008,68464,1,18,162,978, %U A343599 4482,16722,53154,148626,374274,1,20,200,1340,6800,28004,97880,299660,822560,2060980,1,22,242,1782,9922,44726,170610,568150,1690370,4573910,11414898 %N A343599 T(n,k) is the coordination number of the (n+1)-dimensional cubic lattice for radius k; triangle read by rows, n>=0, 0<=k<=n. %H A343599 J. Schroder, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Schroder/schroder45.html">Generalized Schroder Numbers and the Rotation principle</a>, J. Int. Seq. 10 (2007) # 07.7.7, Theorem 4.2. %F A343599 G.f.: (1+y)/(1-x-y-x*y). %F A343599 T(n,k) = A008288(n,k) + A008288(n,k-1). %e A343599 The full array starts %e A343599 1 2 2 2 2 2 2 2 2 %e A343599 1 4 8 12 16 20 24 28 32 %e A343599 1 6 18 38 66 102 146 198 258 %e A343599 1 8 32 88 192 360 608 952 1408 %e A343599 1 10 50 170 450 1002 1970 3530 5890 %e A343599 1 12 72 292 912 2364 5336 10836 20256 %e A343599 1 14 98 462 1666 4942 12642 28814 59906 %e A343599 1 16 128 688 2816 9424 27008 68464 157184 %e A343599 1 18 162 978 4482 16722 53154 148626 374274 %p A343599 A343599 := proc(n,k) %p A343599 local g,x,y ; %p A343599 g := (1+y)/(1-x-y-x*y) ; %p A343599 coeftayl(%,x=0,n) ; %p A343599 coeftayl(%,y=0,k) ; %p A343599 end proc: %t A343599 T[n_, k_] := Module[{x, y}, SeriesCoefficient[(1 + y)/(1 - x - y - x*y), {x, 0, n}] // SeriesCoefficient[#, {y, 0, k}]&]; %t A343599 Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Aug 16 2023 *) %Y A343599 Cf. A035607 (by antidiags), A008574 (n=1), A005899 (n=2), A008412 (n=3), A008413 (n=4), A008414 (n=5), A001105 (k=2), A035597 (k=3), A035598 (k=4). %Y A343599 Main diagonal gives A050146(n+1). %K A343599 nonn,tabl,easy %O A343599 0,3 %A A343599 _R. J. Mathar_, Apr 21 2021