cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343600 For any positive number n, the ternary representation of a(n) is obtained by left-rotating the ternary representation of n until a nonzero digit appears again as the leftmost digit; a(0) = 0.

This page as a plain text file.
%I A343600 #10 Apr 23 2021 01:20:26
%S A343600 0,1,2,3,4,7,6,5,8,9,12,21,10,13,16,19,22,25,18,15,24,11,14,17,20,23,
%T A343600 26,27,36,63,30,39,48,57,66,75,28,31,34,37,40,43,46,49,52,55,58,61,64,
%U A343600 67,70,73,76,79,54,45,72,33,42,51,60,69,78,29,32,35,38,41
%N A343600 For any positive number n, the ternary representation of a(n) is obtained by left-rotating the ternary representation of n until a nonzero digit appears again as the leftmost digit; a(0) = 0.
%C A343600 This sequence is a permutation of the nonnegative integers with inverse A343601.
%H A343600 Rémy Sigrist, <a href="/A343600/b343600.txt">Table of n, a(n) for n = 0..6561</a>
%H A343600 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A343600 A053735(a(n)) = A053735(n).
%F A343600 A081604(a(n)) = A081604(n).
%F A343600 a^k(n) = n for k = A160384(n) (where a^k denotes the k-th iterate of a).
%e A343600 The first terms, in base 10 and in base 3, are:
%e A343600   n   a(n)  ter(n)  ter(a(n))
%e A343600   --  ----  ------  ---------
%e A343600    0     0       0          0
%e A343600    1     1       1          1
%e A343600    2     2       2          2
%e A343600    3     3      10         10
%e A343600    4     4      11         11
%e A343600    5     7      12         21
%e A343600    6     6      20         20
%e A343600    7     5      21         12
%e A343600    8     8      22         22
%e A343600    9     9     100        100
%e A343600   10    12     101        110
%e A343600   11    21     102        210
%e A343600   12    10     110        101
%e A343600   13    13     111        111
%e A343600   14    16     112        121
%o A343600 (PARI) a(n, base=3) = { my (d=digits(n, base)); for (k=2, #d, if (d[k], return (fromdigits(concat(d[k..#d], d[1..k-1]), base)))); n }
%Y A343600 Cf. A053735, A081604, A139708 (binary variant), A160384, A343601 (inverse).
%K A343600 nonn,base,easy
%O A343600 0,3
%A A343600 _Rémy Sigrist_, Apr 21 2021