cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343601 For any positive number n, the ternary representation of a(n) is obtained by right-rotating the ternary representation of n until a nonzero digit appears again as the leftmost digit; a(0) = 0.

This page as a plain text file.
%I A343601 #12 Apr 23 2021 01:20:31
%S A343601 0,1,2,3,4,7,6,5,8,9,12,21,10,13,22,19,14,23,18,15,24,11,16,25,20,17,
%T A343601 26,27,36,63,30,37,64,57,38,65,28,39,66,31,40,67,58,41,68,55,42,69,32,
%U A343601 43,70,59,44,71,54,45,72,33,46,73,60,47,74,29,48,75,34,49
%N A343601 For any positive number n, the ternary representation of a(n) is obtained by right-rotating the ternary representation of n until a nonzero digit appears again as the leftmost digit; a(0) = 0.
%C A343601 This sequence is a permutation of the nonnegative integers with inverse A343600.
%H A343601 Rémy Sigrist, <a href="/A343601/b343601.txt">Table of n, a(n) for n = 0..6561</a>
%H A343601 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A343601 A053735(a(n)) = A053735(n).
%F A343601 A081604(a(n)) = A081604(n).
%F A343601 a^k(n) = n for k = A160384(n) (where a^k denotes the k-th iterate of a).
%e A343601 The first terms, in base 10 and in base 3, are:
%e A343601   n   a(n)  ter(n)  ter(a(n))
%e A343601   --  ----  ------  ---------
%e A343601    0     0       0          0
%e A343601    1     1       1          1
%e A343601    2     2       2          2
%e A343601    3     3      10         10
%e A343601    4     4      11         11
%e A343601    5     7      12         21
%e A343601    6     6      20         20
%e A343601    7     5      21         12
%e A343601    8     8      22         22
%e A343601    9     9     100        100
%e A343601   10    12     101        110
%e A343601   11    21     102        210
%e A343601   12    10     110        101
%e A343601   13    13     111        111
%e A343601   14    22     112        211
%o A343601 (PARI) a(n, base=3) = { my (d=digits(n, base)); forstep (k=#d, 2, -1, if (d[k], return (fromdigits(concat(d[k..#d], d[1..k-1]), base)))); n }
%Y A343601 Cf. A053735, A081604, A139706 (binary variant), A160384, A343600 (inverse).
%K A343601 nonn,base
%O A343601 0,3
%A A343601 _Rémy Sigrist_, Apr 21 2021