cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343602 For any positive number n, the balanced ternary representation of a(n) is obtained by left-rotating the balanced ternary representation of n until a nonzero digit appears again as the leftmost digit; a(0) = 0.

This page as a plain text file.
%I A343602 #13 Apr 23 2021 01:20:35
%S A343602 0,1,-2,3,4,-11,-8,-5,-6,9,12,7,10,13,-38,-35,-32,-29,-26,-23,-20,-17,
%T A343602 -14,-33,-24,-15,-18,27,36,21,30,39,16,19,22,25,28,31,34,37,40,-119,
%U A343602 -116,-113,-110,-107,-104,-101,-98,-95,-92,-89,-86,-83,-80,-77,-74
%N A343602 For any positive number n, the balanced ternary representation of a(n) is obtained by left-rotating the balanced ternary representation of n until a nonzero digit appears again as the leftmost digit; a(0) = 0.
%C A343602 This sequence can be extended to negative indexes by setting a(-n) = -a(n) for any n > 0. We then obtain a permutation of the integers (Z) with inverse A343601 (after a similar extension to negative indexes).
%H A343602 Rémy Sigrist, <a href="/A343602/b343602.txt">Table of n, a(n) for n = 0..9841</a>
%F A343602 A065363(a(n)) = A065363(n).
%F A343602 A134021(a(n)) = A134021(n).
%F A343602 a^k(n) = n for k = A005812(n) (where a^k denotes the k-th iterate of a).
%e A343602 The first terms, in base 10 and in balanced ternary (where T denotes the digit -1), are:
%e A343602   n   a(n)  bter(n)  bter(a(n))
%e A343602   --  ----  -------  ----------
%e A343602    0     0        0           0
%e A343602    1     1        1           1
%e A343602    2    -2       1T          T1
%e A343602    3     3       10          10
%e A343602    4     4       11          11
%e A343602    5   -11      1TT         TT1
%e A343602    6    -8      1T0         T01
%e A343602    7    -5      1T1         T11
%e A343602    8    -6      10T         T10
%e A343602    9     9      100         100
%e A343602   10    12      101         110
%e A343602   11     7      11T         1T1
%e A343602   12    10      110         101
%e A343602   13    13      111         111
%e A343602   14   -38     1TTT        TTT1
%e A343602   15   -35     1TT0        TT01
%o A343602 (PARI) a(n) = { my (d = [], t); while (n, d = concat(t = centerlift(Mod(n,3)), d); n = (n-t)\3); for (k=2, #d, if (d[k], return (fromdigits(concat(d[k..#d], d[1..k-1]), 3)))); return (fromdigits(d, 3)) }
%Y A343602 Cf. A005812, A065363, A134021, A139708 (binary variant), A343600 (ternary variant), A343603 (inverse).
%K A343602 sign,base
%O A343602 0,3
%A A343602 _Rémy Sigrist_, Apr 21 2021