This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343603 #12 Apr 23 2021 01:20:39 %S A343603 0,1,-2,3,4,-7,-8,11,-6,9,12,-5,10,13,-22,-25,32,-21,-26,33,-20,29,34, %T A343603 -19,-24,35,-18,27,36,-17,30,37,-16,-23,38,-15,28,39,-14,31,40,-67, %U A343603 -76,95,-66,-79,96,-65,86,97,-64,-75,98,-63,-80,99,-62,87,100,-61 %N A343603 For any positive number n, the balanced ternary representation of a(n) is obtained by right-rotating the balanced ternary representation of n until a nonzero digit appears again as the leftmost digit; a(0) = 0. %C A343603 This sequence can be extended to negative indexes by setting a(-n) = -a(n) for any n > 0. We then obtain a permutation of the integers (Z) with inverse A343602 (after a similar extension to negative indexes). %H A343603 Rémy Sigrist, <a href="/A343603/b343603.txt">Table of n, a(n) for n = 0..9841</a> %F A343603 A065363(a(n)) = A065363(n). %F A343603 A134021(a(n)) = A134021(n). %F A343603 a^k(n) = n for k = A005812(n) (where a^k denotes the k-th iterate of a). %e A343603 The first terms, in base 10 and in balanced ternary (where T denotes the digit -1), are: %e A343603 n a(n) bter(n) bter(a(n)) %e A343603 -- ---- ------- ---------- %e A343603 0 0 0 0 %e A343603 1 1 1 1 %e A343603 2 -2 1T T1 %e A343603 3 3 10 10 %e A343603 4 4 11 11 %e A343603 5 -7 1TT T1T %e A343603 6 -8 1T0 T01 %e A343603 7 11 1T1 11T %e A343603 8 -6 10T T10 %e A343603 9 9 100 100 %e A343603 10 12 101 110 %e A343603 11 -5 11T T11 %e A343603 12 10 110 101 %e A343603 13 13 111 111 %e A343603 14 -22 1TTT T1TT %e A343603 15 -25 1TT0 T01T %o A343603 (PARI) a(n) = { my (d = [], t); while (n, d = concat(t = centerlift(Mod(n,3)), d); n = (n-t)\3); forstep (k=#d, 1, -1, if (d[k], return (fromdigits(concat(d[k..#d], d[1..k-1]), 3)))); return (fromdigits(d, 3)) } %Y A343603 Cf. A005812, A065363, A134021, A139706 (binary variant), A343601 (ternary variant), A343602 (inverse). %K A343603 sign,base %O A343603 0,3 %A A343603 _Rémy Sigrist_, Apr 21 2021