cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343613 Decimal expansion of P_{3,2}(3) = Sum 1/p^3 over primes == 2 (mod 3).

Original entry on oeis.org

1, 3, 4, 1, 2, 5, 1, 7, 8, 9, 1, 5, 4, 6, 3, 5, 4, 0, 4, 2, 8, 5, 9, 9, 3, 2, 9, 9, 9, 9, 4, 3, 1, 1, 9, 8, 9, 9, 5, 8, 7, 9, 9, 1, 9, 7, 5, 2, 1, 6, 8, 3, 3, 7, 3, 7, 0, 5, 9, 9, 1, 0, 6, 1, 5, 3, 8, 5, 3, 3, 4, 9, 9, 5, 6, 0, 4, 7, 9, 3, 7, 6, 7, 1, 5, 2, 8, 6, 5, 3, 7, 4, 0, 4, 0, 3, 4, 4, 4, 3, 3, 6, 7, 8, 6
Offset: 0

Views

Author

M. F. Hasler, Apr 22 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.134125178915463540428599329999431198995879919752168337370599106153853349956...
		

Crossrefs

Cf. A003627 (primes 3k-1), A085541 (PrimeZeta(3)), A021031 (1/27).
Cf. A175645 (same for p==1 (mod 3)), A086033 (for primes 4k+1), A085992 (for primes 4k+3), A343612 - A343619 (P_{3,2}(2..9): same for 1/p^2, ..., 1/p^9).

Programs

  • PARI
    s=0;forprimestep(p=2,1e8,3,s+=1./p^3);s \\ For illustration: using primes up to 10^N gives about 2N+2 (= 18 for N=8) correct digits.
    
  • PARI
    A343613_upto(N=100)={localprec(N+5); digits((PrimeZeta32(3)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32.

Formula

P_{3,2}(3) = P(3) - 1/3^3 - P_{3,1}(3) = A085541 - A021031 - A175645.