cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A343624 Decimal expansion of the Prime Zeta modulo function P_{3,1}(4) = Sum 1/p^4 over primes p == 1 (mod 3).

Original entry on oeis.org

0, 0, 0, 4, 6, 1, 3, 1, 5, 0, 5, 5, 3, 4, 3, 3, 8, 6, 9, 4, 0, 1, 7, 4, 5, 3, 0, 3, 3, 3, 4, 0, 9, 4, 5, 4, 3, 3, 9, 9, 3, 9, 0, 1, 8, 3, 5, 3, 8, 1, 6, 8, 7, 0, 3, 6, 7, 9, 6, 6, 8, 3, 7, 5, 9, 6, 2, 4, 8, 9, 7, 8, 8, 5, 3, 2, 7, 9, 5, 2, 8, 8, 5, 0, 0, 2, 1, 9, 0, 0, 8, 5, 6, 6, 6, 8, 3, 6, 9, 7
Offset: 0

Views

Author

M. F. Hasler, Apr 23 2021

Keywords

Comments

The Prime Zeta modulo function at 4 for primes of the form 3k+1 is Sum_{primes in A002476} 1/p^4 = 1/7^4 + 1/13^4 + 1/19^4 + 1/31^4 + ...
The complementary Sum_{primes in A003627} 1/p^4 is given by P_{3,2}(4) = A085964 - 1/3^4 - (this value here) = 0.064186145696557778990099... = A343614.

Examples

			P_{3,1}(4) = 0.000461315055343386940174530333409454339939018353816870...
		

Crossrefs

Cf. A175645, A343625 - A343629 (P_{3,1}(3..9): same for 1/p^s, s=3, 5,..., 9).
Cf. A343614 (P_{3,2}(4): same for p==2 (mod 3)), A086034 (P_{4,1}(4): same for p==1 (mod 4)), A085964 (PrimeZeta(4)).

Programs

  • Mathematica
    With[{s=4}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* adopted from Vaclav Kotesovec's code in A175645 *)
  • PARI
    s=0; forprimestep(p=1, 1e8, 3, s+=1./p^4); s \\ Naïve, for illustration: primes up to 10^N give about 3N+2 (= 26 for N=8) correct digits.
    
  • PARI
    A343606_upto(N=100)={localprec(N+5);digits((PrimeZeta31(4)+1)\.1^N)[^1]} \\ cf. A175644 for PrimeZeta31

A086034 Decimal expansion of the prime zeta modulo function at 4 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 1, 6, 4, 9, 5, 8, 4, 1, 5, 4, 0, 2, 9, 2, 9, 1, 5, 9, 8, 9, 9, 6, 7, 6, 1, 3, 1, 3, 6, 3, 8, 8, 5, 1, 8, 2, 7, 4, 8, 7, 9, 0, 9, 9, 4, 3, 8, 3, 4, 7, 3, 2, 1, 4, 7, 8, 1, 1, 5, 2, 5, 8, 3, 8, 8, 0, 0, 4, 9, 7, 5, 1, 7, 8, 7, 7, 7, 8, 8, 9, 3, 6, 8, 0, 1, 8, 2, 8, 0, 8, 7, 2, 2, 3, 0, 3, 6, 4, 6, 3, 9, 2, 9
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			0.0016495841540292915989967613136388518274879099438347321478115258388...
		

Crossrefs

Cf. A085993 (same for primes 4k+3), A343624 (for primes 3k+1), A343614 (for primes 3k+2), A086032 - A086039 (for 1/p^2, ..., 1/p^9), A085541 (PrimeZeta(3)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    a[s_] = (1 + 2^-s)^-1* DirichletBeta[s] Zeta[s]/Zeta[2 s]; m = 120; $MaxExtraPrecision = 680; Join[{0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]*Log[a[(2n + 1)*4]]/(2n + 1), {n, 0, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated Mar 14 2018 *)
  • PARI
    A086034_upto(N=100)={localprec(N+3); digits((PrimeZeta41(4)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(4) = Sum_{p in A002144} 1/p^4 where A002144 = {primes p == 1 mod 4};
= Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(4m)*zeta(4m)/zeta(8m)/(1+2^(-4m)))[using Gourdon & Sebah, Theorem 11] - M. F. Hasler, Apr 26 2021.

Extensions

Edited by M. F. Hasler, Apr 26 2021
Showing 1-2 of 2 results.