A343616 Decimal expansion of P_{3,2}(6) = Sum 1/p^6 over primes == 2 (mod 3).
0, 1, 5, 6, 8, 9, 6, 1, 4, 7, 2, 7, 1, 3, 0, 4, 6, 1, 5, 6, 3, 5, 2, 7, 6, 6, 6, 1, 5, 2, 2, 0, 9, 0, 9, 1, 8, 1, 4, 2, 0, 8, 6, 7, 5, 5, 5, 3, 0, 7, 7, 7, 6, 3, 3, 6, 6, 1, 5, 3, 1, 8, 8, 6, 7, 6, 4, 5, 7, 2, 3, 3, 5, 6, 2, 3, 7, 3, 0, 4, 0, 7, 0, 0, 5, 5, 2, 4, 2, 2, 1, 0, 3, 3, 6, 8, 4, 3, 5, 2
Offset: 0
Examples
0.015689614727130461563527666152209091814208675553077763366153188676457...
Links
- R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015, value P(m=3, n=2, s=6), p. 21.
- OEIS index to entries related to the (prime) zeta function.
Crossrefs
Programs
Formula
P_{3,2}(6) = Sum_{p in A003627} 1/p^6 = P(6) - 1/3^6 - P_{3,1}(6).
Comments