cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A343619 Decimal expansion of P_{3,2}(9) = Sum 1/p^9 over primes == 2 (mod 3).

Original entry on oeis.org

0, 0, 1, 9, 5, 3, 6, 3, 7, 4, 3, 3, 1, 5, 8, 7, 1, 3, 7, 2, 0, 8, 0, 4, 6, 0, 1, 5, 1, 2, 3, 9, 2, 9, 1, 7, 6, 0, 6, 9, 3, 3, 5, 0, 0, 3, 9, 1, 2, 2, 2, 0, 6, 4, 6, 2, 9, 1, 6, 2, 6, 1, 3, 4, 0, 4, 2, 4, 6, 8, 4, 9, 4, 2, 8, 9, 4, 9, 0, 3, 2, 9, 3, 0, 3, 4, 2, 1, 7, 9, 3, 7, 8, 2, 6, 9, 0, 7, 9, 1, 2, 4, 6, 3, 8
Offset: 0

Views

Author

M. F. Hasler, Apr 25 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.0019536374331587137208046015123929176069335003912220646291626134042468494...
		

Crossrefs

Cf. A003627 (primes 3k-1), A001017 (n^9), A085969 (PrimeZeta(9)).
Cf. A343612 - A343618 (P_{3,2}(s): analog for 1/p^s, s = 2 .. 8).
Cf. A343629 (for primes 3k+1), A086039 (for primes 4k+1), A085998 (for primes 4k+3).

Programs

  • Mathematica
    digits = 1004; nmax0 = 50; dnmax = 10;
    Clear[PrimeZeta31];
    PrimeZeta31[s_, nmax_] := PrimeZeta31[s, nmax] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2 n + 1] ((1/(4 n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2 t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, nmax}] // N[#, digits + 5] &;
    PrimeZeta31[9, nmax = nmax0];
    PrimeZeta31[9, nmax += dnmax];
    While[Abs[PrimeZeta31[9, nmax] - PrimeZeta31[9, nmax - dnmax]] > 10^-(digits + 5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta32[9] = PrimeZetaP[9] - 1/3^9 - PrimeZeta31[9, nmax];
    Join[{0, 0}, RealDigits[PrimeZeta32[9], 10, digits][[1]] ] (* Jean-François Alcover, May 07 2021, after M. F. Hasler's PARI code *)
  • PARI
    A343619_upto(N=100)={localprec(N+5); digits((PrimeZeta32(9)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32

Formula

P_{3,2}(9) = Sum_{p in A003627} 1/p^9 = P(9) - 1/3^9 - P_{3,1}(9).

A086038 Decimal expansion of the prime zeta modulo function at 8 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 5, 6, 1, 3, 7, 1, 6, 8, 0, 3, 9, 6, 4, 6, 9, 8, 0, 8, 2, 4, 8, 4, 3, 2, 3, 1, 2, 4, 7, 3, 9, 3, 6, 4, 4, 7, 2, 6, 0, 6, 0, 1, 8, 0, 7, 2, 9, 8, 8, 7, 0, 6, 6, 6, 7, 5, 4, 5, 9, 9, 1, 7, 4, 7, 4, 1, 2, 1, 1, 1, 8, 8, 8, 4, 8, 9, 3, 8, 8, 9, 7, 9, 8, 9, 1, 4, 8, 1, 7, 8, 0, 3, 0, 3, 0, 1, 3, 7, 6
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			2.56137168039646980824843231247393644726060180729887066675459917474121... * 10^-6
		

Crossrefs

Cf. A085997 (same for primes 4k+3), A343628 (for primes 3k+1), A343618 (for primes 3k+2), A086032 - A086039 (for 1/p^2, ..., 1/p^9), A085968 (PrimeZeta(8)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    digits = 1000; m0 = 50; dm = 10; dd = 10; Clear[f, g];
    b[s_] := (1+2^-s)^-1*DirichletBeta[s] Zeta[s]/Zeta[2s] // N[#, digits+dd]&;
    f[n_] := f[n] = (1/2) MoebiusMu[2n + 1] Log[b[8(2n + 1)]]/(2n + 1);
    g[m_] := g[m] = Sum[f[n], {n, 0, m}] ; g[m = m0]; g[m += dm];
    While[Abs[g[m] - g[m - dm]] < 10^(-digits - dd), Print[m]; m += dm];
    Join[{0, 0, 0, 0, 0}, RealDigits[g[m], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 08 2021 *)
  • PARI
    A086038_upto(N=100)={localprec(N+3); digits((PrimeZeta41(8)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(8) = Sum_{p in A002144} 1/p^8, where A002144 = {primes p == 1 (mod 4)};
= Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(8m)*zeta(8m)/zeta(16m)/(1+2^(-8m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

Extensions

Edited by M. F. Hasler, Apr 26 2021
Showing 1-2 of 2 results.