cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343619 Decimal expansion of P_{3,2}(9) = Sum 1/p^9 over primes == 2 (mod 3).

Original entry on oeis.org

0, 0, 1, 9, 5, 3, 6, 3, 7, 4, 3, 3, 1, 5, 8, 7, 1, 3, 7, 2, 0, 8, 0, 4, 6, 0, 1, 5, 1, 2, 3, 9, 2, 9, 1, 7, 6, 0, 6, 9, 3, 3, 5, 0, 0, 3, 9, 1, 2, 2, 2, 0, 6, 4, 6, 2, 9, 1, 6, 2, 6, 1, 3, 4, 0, 4, 2, 4, 6, 8, 4, 9, 4, 2, 8, 9, 4, 9, 0, 3, 2, 9, 3, 0, 3, 4, 2, 1, 7, 9, 3, 7, 8, 2, 6, 9, 0, 7, 9, 1, 2, 4, 6, 3, 8
Offset: 0

Views

Author

M. F. Hasler, Apr 25 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.0019536374331587137208046015123929176069335003912220646291626134042468494...
		

Crossrefs

Cf. A003627 (primes 3k-1), A001017 (n^9), A085969 (PrimeZeta(9)).
Cf. A343612 - A343618 (P_{3,2}(s): analog for 1/p^s, s = 2 .. 8).
Cf. A343629 (for primes 3k+1), A086039 (for primes 4k+1), A085998 (for primes 4k+3).

Programs

  • Mathematica
    digits = 1004; nmax0 = 50; dnmax = 10;
    Clear[PrimeZeta31];
    PrimeZeta31[s_, nmax_] := PrimeZeta31[s, nmax] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2 n + 1] ((1/(4 n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2 t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, nmax}] // N[#, digits + 5] &;
    PrimeZeta31[9, nmax = nmax0];
    PrimeZeta31[9, nmax += dnmax];
    While[Abs[PrimeZeta31[9, nmax] - PrimeZeta31[9, nmax - dnmax]] > 10^-(digits + 5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta32[9] = PrimeZetaP[9] - 1/3^9 - PrimeZeta31[9, nmax];
    Join[{0, 0}, RealDigits[PrimeZeta32[9], 10, digits][[1]] ] (* Jean-François Alcover, May 07 2021, after M. F. Hasler's PARI code *)
  • PARI
    A343619_upto(N=100)={localprec(N+5); digits((PrimeZeta32(9)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32

Formula

P_{3,2}(9) = Sum_{p in A003627} 1/p^9 = P(9) - 1/3^9 - P_{3,1}(9).