A343626 Decimal expansion of the Prime Zeta modulo function P_{3,1}(6) = Sum 1/p^6 over primes p == 1 (mod 3).
0, 0, 0, 0, 0, 8, 7, 3, 0, 0, 1, 1, 0, 2, 3, 1, 9, 8, 1, 6, 7, 0, 1, 2, 0, 4, 2, 7, 7, 9, 1, 4, 5, 2, 3, 1, 9, 4, 9, 5, 6, 1, 0, 7, 9, 7, 6, 4, 5, 3, 9, 1, 8, 3, 6, 9, 8, 9, 7, 1, 7, 7, 1, 3, 8, 1, 3, 6, 2, 9, 8, 3, 2, 9, 4, 5, 3, 8, 7, 6, 4, 9, 6, 9, 9, 3, 6, 1, 8, 5, 8, 6, 2, 3, 2, 9, 3, 3, 4, 5
Offset: 0
Examples
P_{3,1}(6) = 8.7300110231981670120427791452319495610797645391837...*10^-8
Links
- R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015, p.21.
- OEIS index to entries related to the (prime) zeta function.
Crossrefs
Programs
-
Mathematica
With[{s=6}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* adopted from Vaclav Kotesovec's code in A175645 *)
-
PARI
s=0; forprimestep(p=1, 1e8, 3, s+=1./p^6); s \\ For illustration: primes up to 10^N give 5N+2 (= 42 for N=8) correct digits.
-
PARI
A343626_upto(N=100)={localprec(N+5);digits((PrimeZeta31(6)+1)\.1^N)[^1]} \\ cf. A175644 for PrimeZeta31
Comments