This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343652 #16 Apr 28 2021 07:41:16 %S A343652 1,1,1,2,1,2,1,3,2,2,1,4,1,2,2,4,1,4,1,4,2,2,1,6,2,2,3,4,1,5,1,5,2,2, %T A343652 2,8,1,2,2,6,1,5,1,4,4,2,1,8,2,4,2,4,1,6,2,6,2,2,1,10,1,2,4,6,2,5,1,4, %U A343652 2,5,1,12,1,2,4,4,2,5,1,8,4,2,1,10,2,2 %N A343652 Number of maximal pairwise coprime sets of divisors of n. %C A343652 Also the number of maximal pairwise coprime sets of divisors > 1 of n. For example, the a(n) sets for n = 12, 30, 36, 60, 120 are: %C A343652 {6} {30} {6} {30} {30} %C A343652 {12} {2,15} {12} {60} {60} %C A343652 {2,3} {3,10} {18} {2,15} {120} %C A343652 {3,4} {5,6} {36} {3,10} {2,15} %C A343652 {2,3,5} {2,3} {3,20} {3,10} %C A343652 {2,9} {4,15} {3,20} %C A343652 {3,4} {5,6} {3,40} %C A343652 {4,9} {5,12} {4,15} %C A343652 {2,3,5} {5,6} %C A343652 {3,4,5} {5,12} %C A343652 {5,24} %C A343652 {8,15} %C A343652 {2,3,5} %C A343652 {3,4,5} %C A343652 {3,5,8} %F A343652 a(n) = A343660(n) + A005361(n). %e A343652 The a(n) sets for n = 12, 30, 36, 60, 120: %e A343652 {1,6} {1,30} {1,6} {1,30} {1,30} %e A343652 {1,12} {1,2,15} {1,12} {1,60} {1,60} %e A343652 {1,2,3} {1,3,10} {1,18} {1,2,15} {1,120} %e A343652 {1,3,4} {1,5,6} {1,36} {1,3,10} {1,2,15} %e A343652 {1,2,3,5} {1,2,3} {1,3,20} {1,3,10} %e A343652 {1,2,9} {1,4,15} {1,3,20} %e A343652 {1,3,4} {1,5,6} {1,3,40} %e A343652 {1,4,9} {1,5,12} {1,4,15} %e A343652 {1,2,3,5} {1,5,6} %e A343652 {1,3,4,5} {1,5,12} %e A343652 {1,5,24} %e A343652 {1,8,15} %e A343652 {1,2,3,5} %e A343652 {1,3,4,5} %e A343652 {1,3,5,8} %t A343652 fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y]; %t A343652 Table[Length[fasmax[Select[Subsets[Divisors[n]],CoprimeQ@@#&]]],{n,100}] %Y A343652 The case of pairs is A063647. %Y A343652 The case of triples is A066620. %Y A343652 The non-maximal version counting empty sets and singletons is A225520. %Y A343652 The non-maximal version with no 1's is A343653. %Y A343652 The non-maximal version is A343655. %Y A343652 The version for subsets of {1..n} is A343659. %Y A343652 The case without 1's or singletons is A343660. %Y A343652 A018892 counts pairwise coprime unordered pairs of divisors. %Y A343652 A048691 counts pairwise coprime ordered pairs of divisors. %Y A343652 A048785 counts pairwise coprime ordered triples of divisors. %Y A343652 A084422, A187106, A276187, and A320426 count pairwise coprime sets. %Y A343652 A100565 counts pairwise coprime unordered triples of divisors. %Y A343652 A305713 counts pairwise coprime non-singleton strict partitions. %Y A343652 A324837 counts minimal subsets of {1...n} with least common multiple n. %Y A343652 A325683 counts maximal Golomb rulers. %Y A343652 A326077 counts maximal pairwise indivisible sets. %Y A343652 Cf. A005361, A007359, A051026, A062319, A067824, A074206, A146291, A285572, A325859, A326359, A326496, A326675, A343654. %K A343652 nonn %O A343652 1,4 %A A343652 _Gus Wiseman_, Apr 25 2021