This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343653 #17 Aug 01 2021 01:56:30 %S A343653 0,0,0,0,0,1,0,0,0,1,0,2,0,1,1,0,0,2,0,2,1,1,0,3,0,1,0,2,0,7,0,0,1,1, %T A343653 1,4,0,1,1,3,0,7,0,2,2,1,0,4,0,2,1,2,0,3,1,3,1,1,0,13,0,1,2,0,1,7,0,2, %U A343653 1,7,0,6,0,1,2,2,1,7,0,4,0,1,0,13,1,1 %N A343653 Number of non-singleton pairwise coprime nonempty sets of divisors > 1 of n. %C A343653 First differs from A066620 at a(210) = 36, A066620(210) = 35. %e A343653 The a(n) sets for n = 6, 12, 24, 30, 36, 60, 72, 96: %e A343653 {2,3} {2,3} {2,3} {2,3} {2,3} {2,3} {2,3} {2,3} %e A343653 {3,4} {3,4} {2,5} {2,9} {2,5} {2,9} {3,4} %e A343653 {3,8} {3,5} {3,4} {3,4} {3,4} {3,8} %e A343653 {5,6} {4,9} {3,5} {3,8} {3,16} %e A343653 {2,15} {4,5} {4,9} {3,32} %e A343653 {3,10} {5,6} {8,9} %e A343653 {2,3,5} {2,15} %e A343653 {3,10} %e A343653 {3,20} %e A343653 {4,15} %e A343653 {5,12} %e A343653 {2,3,5} %e A343653 {3,4,5} %t A343653 Table[Length[Select[Subsets[Rest[Divisors[n]]],CoprimeQ@@#&]],{n,100}] %Y A343653 The case of pairs is A089233. %Y A343653 The version with 1's, empty sets, and singletons is A225520. %Y A343653 The version for subsets of {1..n} is A320426. %Y A343653 The version for strict partitions is A337485. %Y A343653 The version for compositions is A337697. %Y A343653 The version for prime indices is A337984. %Y A343653 The maximal case with 1's is A343652. %Y A343653 The version with empty sets is a(n) + 1. %Y A343653 The version with singletons is A343654(n) - 1. %Y A343653 The version with empty sets and singletons is A343654. %Y A343653 The version with 1's is A343655. %Y A343653 The maximal case is A343660. %Y A343653 A018892 counts pairwise coprime unordered pairs of divisors. %Y A343653 A048691 counts pairwise coprime ordered pairs of divisors. %Y A343653 A048785 counts pairwise coprime ordered triples of divisors. %Y A343653 A051026 counts pairwise indivisible subsets of {1..n}. %Y A343653 A100565 counts pairwise coprime unordered triples of divisors. %Y A343653 A305713 counts pairwise coprime non-singleton strict partitions. %Y A343653 A343659 counts maximal pairwise coprime subsets of {1..n}. %Y A343653 Cf. A007359, A067824, A074206, A076078, A084422, A187106, A285572, A324837, A326675, A327516, A338315. %K A343653 nonn %O A343653 1,12 %A A343653 _Gus Wiseman_, Apr 25 2021