This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343654 #8 Apr 28 2021 07:41:25 %S A343654 1,2,2,3,2,5,2,4,3,5,2,8,2,5,5,5,2,8,2,8,5,5,2,11,3,5,4,8,2,15,2,6,5, %T A343654 5,5,13,2,5,5,11,2,15,2,8,8,5,2,14,3,8,5,8,2,11,5,11,5,5,2,25,2,5,8,7, %U A343654 5,15,2,8,5,15,2,18,2,5,8,8,5,15,2,14,5,5 %N A343654 Number of pairwise coprime sets of divisors > 1 of n. %C A343654 First differs from A100565 at a(210) = 52, A100565(210) = 51. %e A343654 The a(n) sets for n = 1, 2, 4, 6, 8, 12, 24, 30, 32, 36, 48: %e A343654 {} {} {} {} {} {} {} {} {} {} {} %e A343654 {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} %e A343654 {4} {3} {4} {3} {3} {3} {4} {3} {3} %e A343654 {6} {8} {4} {4} {5} {8} {4} {4} %e A343654 {2,3} {6} {6} {6} {16} {6} {6} %e A343654 {12} {8} {10} {32} {9} {8} %e A343654 {2,3} {12} {15} {12} {12} %e A343654 {3,4} {24} {30} {18} {16} %e A343654 {2,3} {2,3} {36} {24} %e A343654 {3,4} {2,5} {2,3} {48} %e A343654 {3,8} {3,5} {2,9} {2,3} %e A343654 {5,6} {3,4} {3,4} %e A343654 {2,15} {4,9} {3,8} %e A343654 {3,10} {3,16} %e A343654 {2,3,5} %t A343654 pwcop[y_]:=And@@(GCD@@#1==1&)/@Subsets[y,{2}]; %t A343654 Table[Length[Select[Subsets[Rest[Divisors[n]]],pwcop]],{n,100}] %Y A343654 The version for partitions is A007359. %Y A343654 The version for subsets of {1..n} is A084422. %Y A343654 The case of pairs is A089233. %Y A343654 The version with 1's is A225520. %Y A343654 The maximal case is A343652. %Y A343654 The case without empty sets or singletons is A343653. %Y A343654 The maximal case without singletons is A343660. %Y A343654 A018892 counts pairwise coprime unordered pairs of divisors. %Y A343654 A051026 counts pairwise indivisible subsets of {1..n}. %Y A343654 A100565 counts pairwise coprime unordered triples of divisors. %Y A343654 A187106, A276187, and A320426 count other types of pairwise coprime sets. %Y A343654 A326077 counts maximal pairwise indivisible sets. %Y A343654 Cf. A007360, A051026, A062319, A074206, A087087, A101268, A285572, A305713, A320423, A326675, A337485, A343655. %K A343654 nonn %O A343654 1,2 %A A343654 _Gus Wiseman_, Apr 26 2021