cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343658 Array read by antidiagonals where A(n,k) is the number of ways to choose a multiset of k divisors of n.

This page as a plain text file.
%I A343658 #16 Jan 11 2024 22:56:47
%S A343658 1,1,1,1,2,1,1,3,2,1,1,4,3,3,1,1,5,4,6,2,1,1,6,5,10,3,4,1,1,7,6,15,4,
%T A343658 10,2,1,1,8,7,21,5,20,3,4,1,1,9,8,28,6,35,4,10,3,1,1,10,9,36,7,56,5,
%U A343658 20,6,4,1,1,11,10,45,8,84,6,35,10,10,2,1
%N A343658 Array read by antidiagonals where A(n,k) is the number of ways to choose a multiset of k divisors of n.
%C A343658 First differs from A343656 at A(4,2) = 6, A343656(4,2) = 5.
%C A343658 As a triangle, T(n,k) = number of ways to choose a multiset of n - k divisors of k.
%H A343658 Andrew Howroyd, <a href="/A343658/b343658.txt">Table of n, a(n) for n = 1..1275</a> (first 50 antidiagonals)
%F A343658 A(n,k) = ((A000005(n), k)) = A007318(A000005(n) + k - 1, k).
%F A343658 T(n,k) = ((A000005(k), n - k)) = A007318(A000005(k) + n - k - 1, n - k).
%e A343658 Array begins:
%e A343658        k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
%e A343658   n=1:  1   1   1   1   1   1   1   1   1
%e A343658   n=2:  1   2   3   4   5   6   7   8   9
%e A343658   n=3:  1   2   3   4   5   6   7   8   9
%e A343658   n=4:  1   3   6  10  15  21  28  36  45
%e A343658   n=5:  1   2   3   4   5   6   7   8   9
%e A343658   n=6:  1   4  10  20  35  56  84 120 165
%e A343658   n=7:  1   2   3   4   5   6   7   8   9
%e A343658   n=8:  1   4  10  20  35  56  84 120 165
%e A343658   n=9:  1   3   6  10  15  21  28  36  45
%e A343658 Triangle begins:
%e A343658    1
%e A343658    1   1
%e A343658    1   2   1
%e A343658    1   3   2   1
%e A343658    1   4   3   3   1
%e A343658    1   5   4   6   2   1
%e A343658    1   6   5  10   3   4   1
%e A343658    1   7   6  15   4  10   2   1
%e A343658    1   8   7  21   5  20   3   4   1
%e A343658    1   9   8  28   6  35   4  10   3   1
%e A343658    1  10   9  36   7  56   5  20   6   4   1
%e A343658    1  11  10  45   8  84   6  35  10  10   2   1
%e A343658 For example, row n = 6 counts the following multisets:
%e A343658   {1,1,1,1,1}  {1,1,1,1}  {1,1,1}  {1,1}  {1}  {}
%e A343658                {1,1,1,2}  {1,1,3}  {1,2}  {5}
%e A343658                {1,1,2,2}  {1,3,3}  {1,4}
%e A343658                {1,2,2,2}  {3,3,3}  {2,2}
%e A343658                {2,2,2,2}           {2,4}
%e A343658                                    {4,4}
%e A343658 Note that for n = 6, k = 4 in the triangle, the two multisets {1,4} and {2,2} represent the same divisor 4, so they are only counted once under A343656(4,2) = 5.
%t A343658 multchoo[n_,k_]:=Binomial[n+k-1,k];
%t A343658 Table[multchoo[DivisorSigma[0,k],n-k],{n,10},{k,n}]
%o A343658 (PARI) A(n,k) = binomial(numdiv(n) + k - 1, k)
%o A343658 { for(n=1, 9, for(k=0, 8, print1(A(n,k), ", ")); print ) } \\ _Andrew Howroyd_, Jan 11 2024
%Y A343658 Row k = 1 of the array is A000005.
%Y A343658 Column n = 4 of the array is A000217.
%Y A343658 Column n = 6 of the array is A000292.
%Y A343658 Row k = 2 of the array is A184389.
%Y A343658 The distinct products of these multisets are counted by A343656.
%Y A343658 Antidiagonal sums of the array (or row sums of the triangle) are A343661.
%Y A343658 A000312 = n^n.
%Y A343658 A009998(n,k) = n^k (as an array, offset 1).
%Y A343658 A007318 counts k-sets of elements of {1..n}.
%Y A343658 A059481 counts k-multisets of elements of {1..n}.
%Y A343658 Cf. A000169, A062319, A067824, A143773, A146291, A176029, A285572, A326077, A327527, A334996, A343652, A343657.
%K A343658 nonn,tabl
%O A343658 1,5
%A A343658 _Gus Wiseman_, Apr 29 2021