This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343658 #16 Jan 11 2024 22:56:47 %S A343658 1,1,1,1,2,1,1,3,2,1,1,4,3,3,1,1,5,4,6,2,1,1,6,5,10,3,4,1,1,7,6,15,4, %T A343658 10,2,1,1,8,7,21,5,20,3,4,1,1,9,8,28,6,35,4,10,3,1,1,10,9,36,7,56,5, %U A343658 20,6,4,1,1,11,10,45,8,84,6,35,10,10,2,1 %N A343658 Array read by antidiagonals where A(n,k) is the number of ways to choose a multiset of k divisors of n. %C A343658 First differs from A343656 at A(4,2) = 6, A343656(4,2) = 5. %C A343658 As a triangle, T(n,k) = number of ways to choose a multiset of n - k divisors of k. %H A343658 Andrew Howroyd, <a href="/A343658/b343658.txt">Table of n, a(n) for n = 1..1275</a> (first 50 antidiagonals) %F A343658 A(n,k) = ((A000005(n), k)) = A007318(A000005(n) + k - 1, k). %F A343658 T(n,k) = ((A000005(k), n - k)) = A007318(A000005(k) + n - k - 1, n - k). %e A343658 Array begins: %e A343658 k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 %e A343658 n=1: 1 1 1 1 1 1 1 1 1 %e A343658 n=2: 1 2 3 4 5 6 7 8 9 %e A343658 n=3: 1 2 3 4 5 6 7 8 9 %e A343658 n=4: 1 3 6 10 15 21 28 36 45 %e A343658 n=5: 1 2 3 4 5 6 7 8 9 %e A343658 n=6: 1 4 10 20 35 56 84 120 165 %e A343658 n=7: 1 2 3 4 5 6 7 8 9 %e A343658 n=8: 1 4 10 20 35 56 84 120 165 %e A343658 n=9: 1 3 6 10 15 21 28 36 45 %e A343658 Triangle begins: %e A343658 1 %e A343658 1 1 %e A343658 1 2 1 %e A343658 1 3 2 1 %e A343658 1 4 3 3 1 %e A343658 1 5 4 6 2 1 %e A343658 1 6 5 10 3 4 1 %e A343658 1 7 6 15 4 10 2 1 %e A343658 1 8 7 21 5 20 3 4 1 %e A343658 1 9 8 28 6 35 4 10 3 1 %e A343658 1 10 9 36 7 56 5 20 6 4 1 %e A343658 1 11 10 45 8 84 6 35 10 10 2 1 %e A343658 For example, row n = 6 counts the following multisets: %e A343658 {1,1,1,1,1} {1,1,1,1} {1,1,1} {1,1} {1} {} %e A343658 {1,1,1,2} {1,1,3} {1,2} {5} %e A343658 {1,1,2,2} {1,3,3} {1,4} %e A343658 {1,2,2,2} {3,3,3} {2,2} %e A343658 {2,2,2,2} {2,4} %e A343658 {4,4} %e A343658 Note that for n = 6, k = 4 in the triangle, the two multisets {1,4} and {2,2} represent the same divisor 4, so they are only counted once under A343656(4,2) = 5. %t A343658 multchoo[n_,k_]:=Binomial[n+k-1,k]; %t A343658 Table[multchoo[DivisorSigma[0,k],n-k],{n,10},{k,n}] %o A343658 (PARI) A(n,k) = binomial(numdiv(n) + k - 1, k) %o A343658 { for(n=1, 9, for(k=0, 8, print1(A(n,k), ", ")); print ) } \\ _Andrew Howroyd_, Jan 11 2024 %Y A343658 Row k = 1 of the array is A000005. %Y A343658 Column n = 4 of the array is A000217. %Y A343658 Column n = 6 of the array is A000292. %Y A343658 Row k = 2 of the array is A184389. %Y A343658 The distinct products of these multisets are counted by A343656. %Y A343658 Antidiagonal sums of the array (or row sums of the triangle) are A343661. %Y A343658 A000312 = n^n. %Y A343658 A009998(n,k) = n^k (as an array, offset 1). %Y A343658 A007318 counts k-sets of elements of {1..n}. %Y A343658 A059481 counts k-multisets of elements of {1..n}. %Y A343658 Cf. A000169, A062319, A067824, A143773, A146291, A176029, A285572, A326077, A327527, A334996, A343652, A343657. %K A343658 nonn,tabl %O A343658 1,5 %A A343658 _Gus Wiseman_, Apr 29 2021