This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343659 #24 May 05 2021 02:11:23 %S A343659 1,1,1,2,2,3,3,4,7,9,9,10,10,12,16,19,19,20,20,22,28,32,32,33,54,61, %T A343659 77,84,84,85,85,94,112,123,158,161,161,176,206,212,212,214,214,229, %U A343659 241,260,260,263,417,428,490,521,521,526,655,674,764,818,818,820,820,874,918,975,1182,1189,1189 %N A343659 Number of maximal pairwise coprime subsets of {1..n}. %C A343659 For this sequence, it does not matter whether singletons are considered pairwise coprime. %C A343659 For n > 2, also the number of maximal pairwise coprime subsets of {2..n}. %C A343659 For each prime p <= n, p divides exactly one element of each maximal subset. - _Bert Dobbelaere_, May 04 2021 %H A343659 Bert Dobbelaere, <a href="/A343659/b343659.txt">Table of n, a(n) for n = 1..500</a> %H A343659 Bert Dobbelaere, <a href="/A343659/a343659.py.txt">Python program</a> %e A343659 The a(1) = 1 through a(9) = 7 subsets: %e A343659 {1} {12} {123} {123} {1235} {156} {1567} {1567} {1567} %e A343659 {134} {1345} {1235} {12357} {12357} {12357} %e A343659 {1345} {13457} {13457} {12579} %e A343659 {13578} {13457} %e A343659 {13578} %e A343659 {14579} %e A343659 {15789} %t A343659 fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y]; %t A343659 Table[Length[fasmax[Select[Subsets[Range[n]],CoprimeQ@@#&]]],{n,15}] %Y A343659 The case of pairs is A015614. %Y A343659 The case of triples is A015617. %Y A343659 The non-maximal version counting empty sets and singletons is A084422. %Y A343659 The non-maximal version counting singletons is A187106. %Y A343659 The non-maximal version is A320426(n) = A276187(n) + 1. %Y A343659 The version for indivisibility instead of coprimality is A326077. %Y A343659 The version for sets of divisors is A343652. %Y A343659 The version for sets of divisors > 1 is A343660. %Y A343659 A018892 counts coprime unordered pairs of divisors. %Y A343659 A051026 counts pairwise indivisible subsets of {1..n}. %Y A343659 A100565 counts pairwise coprime unordered triples of divisors. %Y A343659 Cf. A007360, A067824, A087087, A225520, A324837, A325683, A325859, A326358, A326496, A326675, A333227, A343653, A343655. %K A343659 nonn %O A343659 1,4 %A A343659 _Gus Wiseman_, Apr 26 2021 %E A343659 More terms from _Bert Dobbelaere_, May 04 2021