This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343661 #6 Apr 30 2021 17:16:05 %S A343661 1,2,4,7,12,19,30,46,70,105,155,223,316,443,619,865,1210,1690,2354, %T A343661 3263,4497,6157,8368,11280,15078,19989,26296,34356,44626,57693,74321, %U A343661 95503,122535,157101,201377,258155,330994,424398,544035,696995,892104,1140298,1455080 %N A343661 Sum of numbers of y-multisets of divisors of x for each x >= 1, y >= 0, x + y = n. %F A343661 a(n) = Sum_{k=1..n} binomial(sigma(k) + n - k - 1, n - k). %e A343661 The a(5) = 12 multisets of divisors: %e A343661 {1,1,1,1} {1,1,1} {1,1} {1} {} %e A343661 {1,1,2} {1,3} {2} %e A343661 {1,2,2} {3,3} {4} %e A343661 {2,2,2} %t A343661 multchoo[n_,k_]:=Binomial[n+k-1,k]; %t A343661 Table[Sum[multchoo[DivisorSigma[0,k],n-k],{k,n}],{n,10}] %Y A343661 Antidiagonal sums of the array A343658 (or row sums of the triangle). %Y A343661 Dominates A343657. %Y A343661 A000005 counts divisors. %Y A343661 A007318 counts k-sets of elements of {1..n}. %Y A343661 A059481 counts k-multisets of elements of {1..n}. %Y A343661 A343656 counts divisors of powers. %Y A343661 Cf. A000169, A000312, A009998, A062319, A067824, A143773, A146291, A176029, A184389, A285572, A326077, A327527, A334996, A343652, A343657. %K A343661 nonn %O A343661 1,2 %A A343661 _Gus Wiseman_, Apr 30 2021