This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343666 #7 Apr 25 2021 20:07:47 %S A343666 1,1,2,5,15,52,202,870,4084,20727,112825,654546,4026487,26145511, %T A343666 178550986,1278168860,9564026947,74615547996,605593775899, %U A343666 5103054929621,44564754448972,402677613100491,3759094788129312,36205919126040190,359340174509911325,3670825700549853053 %N A343666 Number of partitions of an n-set without blocks of size 6. %F A343666 E.g.f.: exp(exp(x) - 1 - x^6/6!). %F A343666 a(n) = n! * Sum_{k=0..floor(n/6)} (-1)^k * Bell(n-6*k) / ((n-6*k)! * k! * (6!)^k). %p A343666 a:= proc(n) option remember; `if`(n=0, 1, add( %p A343666 `if`(j=6, 0, a(n-j)*binomial(n-1, j-1)), j=1..n)) %p A343666 end: %p A343666 seq(a(n), n=0..25); # _Alois P. Heinz_, Apr 25 2021 %t A343666 nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^6/6!], {x, 0, nmax}], x] Range[0, nmax]! %t A343666 Table[n! Sum[(-1)^k BellB[n - 6 k]/((n - 6 k)! k! (6!)^k), {k, 0, Floor[n/6]}], {n, 0, 25}] %t A343666 a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 6, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}] %Y A343666 Cf. A000110, A000296, A027340, A097514, A124504, A343664, A343665, A343667, A343668, A343669. %K A343666 nonn %O A343666 0,3 %A A343666 _Ilya Gutkovskiy_, Apr 25 2021