This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343667 #7 Apr 25 2021 20:07:53 %S A343667 1,1,2,5,15,52,203,876,4132,21075,115375,673620,4172413,27296089, %T A343667 187891174,1356343385,10238632307,80615222404,660560758879, %U A343667 5621465069117,49594663447612,452846969975391,4273130715906123,41612346388251187,417668648929556073,4315893703814296053 %N A343667 Number of partitions of an n-set without blocks of size 7. %F A343667 E.g.f.: exp(exp(x) - 1 - x^7/7!). %F A343667 a(n) = n! * Sum_{k=0..floor(n/7)} (-1)^k * Bell(n-7*k) / ((n-7*k)! * k! * (7!)^k). %p A343667 a:= proc(n) option remember; `if`(n=0, 1, add( %p A343667 `if`(j=7, 0, a(n-j)*binomial(n-1, j-1)), j=1..n)) %p A343667 end: %p A343667 seq(a(n), n=0..25); # _Alois P. Heinz_, Apr 25 2021 %t A343667 nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^7/7!], {x, 0, nmax}], x] Range[0, nmax]! %t A343667 Table[n! Sum[(-1)^k BellB[n - 7 k]/((n - 7 k)! k! (7!)^k), {k, 0, Floor[n/7]}], {n, 0, 25}] %t A343667 a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 7, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}] %Y A343667 Cf. A000110, A000296, A027341, A097514, A124504, A343664, A343665, A343666, A343668, A343669. %K A343667 nonn %O A343667 0,3 %A A343667 _Ilya Gutkovskiy_, Apr 25 2021