This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343668 #7 Apr 25 2021 20:08:00 %S A343668 1,1,2,5,15,52,203,877,4139,21138,115885,677745,4206172,27577513, %T A343668 190289713,1377315050,10426866782,82350895629,677003941219, %U A343668 5781485704892,51193839084907,469251258854001,4445769329586348,43475305461354931,438270620701587657,4549243731200717053 %N A343668 Number of partitions of an n-set without blocks of size 8. %F A343668 E.g.f.: exp(exp(x) - 1 - x^8/8!). %F A343668 a(n) = n! * Sum_{k=0..floor(n/8)} (-1)^k * Bell(n-8*k) / ((n-8*k)! * k! * (8!)^k). %p A343668 a:= proc(n) option remember; `if`(n=0, 1, add( %p A343668 `if`(j=8, 0, a(n-j)*binomial(n-1, j-1)), j=1..n)) %p A343668 end: %p A343668 seq(a(n), n=0..25); # _Alois P. Heinz_, Apr 25 2021 %t A343668 nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^8/8!], {x, 0, nmax}], x] Range[0, nmax]! %t A343668 Table[n! Sum[(-1)^k BellB[n - 8 k]/((n - 8 k)! k! (8!)^k), {k, 0, Floor[n/8]}], {n, 0, 25}] %t A343668 a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 8, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}] %Y A343668 Cf. A000110, A000296, A027342, A097514, A124504, A343664, A343665, A343666, A343667, A343669. %K A343668 nonn %O A343668 0,3 %A A343668 _Ilya Gutkovskiy_, Apr 25 2021