This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343675 #18 Apr 26 2021 21:26:10 %S A343675 2,3,5,7,101,181,383,727,787,929,10301,10501,14341,16361,16561,18181, %T A343675 30103,30703,32323,36563,38183,38783,70507,72727,74747,78787,90709, %U A343675 94949,96769,1074701,1092901,1212121,1218121,1412141,1616161,1658561,1856581,1878781,3072703 %N A343675 Undulating alternating palindromic primes. %C A343675 All terms have an odd number of decimal digits. %C A343675 For n > 3, a(n) is odd and not divisible by 5. %C A343675 Intersection of A002385, A030144 and A059168. %C A343675 Subsequence of A343590. %H A343675 Chai Wah Wu, <a href="/A343675/b343675.txt">Table of n, a(n) for n = 1..10000</a> %e A343675 16361 is a term as it is a palindromic prime, the digits 1, 6, 3, 6 and 1 have odd and even parity alternately, and also alternately rise and fall. %t A343675 Union@Flatten[{{2,3,5,7},Array[Select[FromDigits/@Riffle@@@Tuples[{Tuples[{1,3,5,7,9},#],Tuples[{0,2,4,6,8},#-1]}],(s=Union@Partition[Sign@Differences@IntegerDigits@#,2];(s=={{1,-1}}||s=={{-1,1}})&&PrimeQ@#&&PalindromeQ@#)&]&,4]}] (* _Giorgos Kalogeropoulos_, Apr 26 2021 *) %o A343675 (Python) %o A343675 from sympy import isprime %o A343675 def f(w): %o A343675 for s in w: %o A343675 for t in range(int(s[-1])+1,10,2): %o A343675 yield s+str(t) %o A343675 def g(w): %o A343675 for s in w: %o A343675 for t in range(1-int(s[-1])%2,int(s[-1]),2): %o A343675 yield s+str(t) %o A343675 A343675_list = [2,3,5,7] %o A343675 for l in range(1,9): %o A343675 for d in '1379': %o A343675 x = d %o A343675 for i in range(1,l+1): %o A343675 x = g(x) if i % 2 else f(x) %o A343675 A343675_list.extend([int(p+p[-2::-1]) for p in x if isprime(int(p+p[-2::-1]))]) %o A343675 y = d %o A343675 for i in range(1,l+1): %o A343675 y = f(y) if i % 2 else g(y) %o A343675 A343675_list.extend([int(p+p[-2::-1]) for p in y if isprime(int(p+p[-2::-1]))]) %Y A343675 Cf. A002385, A030144, A059168, A343590. %K A343675 nonn,base %O A343675 1,1 %A A343675 _Chai Wah Wu_, Apr 25 2021