This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343677 #23 Sep 03 2021 20:36:37 %S A343677 4,6,19,34,100,241,697,1779,6590,16585,57237,179291,591325,1707010, %T A343677 6520756,18271423,65212230,210339179,706823539 %N A343677 Number of (2n+1)-digit undulating alternating palindromic primes. %C A343677 a(n) is the number of (2n+1)-digit terms in A343675. %C A343677 a(n) <= A057332(n). %o A343677 (Python) %o A343677 from sympy import isprime %o A343677 def f(w): %o A343677 for s in w: %o A343677 for t in range(int(s[-1])+1,10,2): %o A343677 yield s+str(t) %o A343677 def g(w): %o A343677 for s in w: %o A343677 for t in range(1-int(s[-1])%2,int(s[-1]),2): %o A343677 yield s+str(t) %o A343677 def A343677(n): %o A343677 if n == 0: %o A343677 return 4 %o A343677 c = 0 %o A343677 for d in '1379': %o A343677 x = d %o A343677 for i in range(1,n+1): %o A343677 x = g(x) if i % 2 else f(x) %o A343677 c += sum(1 for p in x if isprime(int(p+p[-2::-1]))) %o A343677 y = d %o A343677 for i in range(1,n+1): %o A343677 y = f(y) if i % 2 else g(y) %o A343677 c += sum(1 for p in y if isprime(int(p+p[-2::-1]))) %o A343677 return c %Y A343677 Cf. A002385, A030144, A057332, A059168, A343590. %K A343677 nonn,base,more %O A343677 0,1 %A A343677 _Chai Wah Wu_, Apr 25 2021 %E A343677 a(17)-a(18) from _Chai Wah Wu_, May 02 2021