This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343689 #20 Dec 17 2021 13:06:31 %S A343689 0,1,10,141,2548,56197,1463670,43966297,1496317768,56904041481, %T A343689 2391466059970,110064342800101,5505608606065020,297412929070311181, %U A343689 17255455494684113518,1070135653599485349297,70646208593060717167120,4946304737167849687047697,366097196759013937558696698 %N A343689 a(1)=0, a(2)=1, a(n) = (4*n-2)*a(n-1) + a(n-2), n > 2. %C A343689 This sequence is one of the two "basis" sequences for sequences having the form s(a,b,1)=a, s(a,b,2)=b, s(n)=(4*n-2)*s(a,b,n-1) + s(a,b,n-2), the second being A343688. s(a,b,n) = a*A343688(n) + b*a(n). %C A343689 Of specific interest is s(3,19,n) and s(1,7,n) which produce the odd terms of A340737 and A340738 respectively and whose quotient converges to e. %C A343689 a(n) mod n = 1 for even n and n-2 for odd n (empirical). %H A343689 Harvey P. Dale, <a href="/A343689/b343689.txt">Table of n, a(n) for n = 1..366</a> %F A343689 a(1)=0, a(1)=1, a(n) = (4*n-2)*a(n-1) + a(n-2). %e A343689 a(4)=14*10+1, a(5)=18*141+10... %p A343689 e := proc(a, b, n) option remember; if n = 1 then a; else if n = 2 then b; else (4*n - 2)*e(a, b, n - 1) + e(a, b, n - 2); end if; end if; end proc %p A343689 for n from 1 to 20 do print(e(0,1,n)) od %t A343689 RecurrenceTable[{a[1]==0,a[2]==1,a[n]==(4n-2)a[n-1]+a[n-2]},a,{n,20}] (* _Harvey P. Dale_, Dec 17 2021 *) %Y A343689 Cf. A340737, A340738, A343688. %K A343689 nonn %O A343689 1,3 %A A343689 _Gary Detlefs_, Apr 26 2021